Hi,
Today, I was running a filter query ("SELECT * FROM widetable WHERE col_long_0 = 0") on a wide table with 1187 columns and Spark started printing the below output. It spills alot of log which I want to turn off. There is any option to turn it off. I have tried both option (ERROR,INFO) in log4j.properties file. It did not work for me. Thank you Regards Faisal 17/05/24 12:39:41 INFO CarbonLateDecodeRule: main Starting to optimize plan 17/05/24 12:39:41 INFO CarbonLateDecodeRule: main Skip CarbonOptimizer 17/05/24 12:39:42 INFO deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id 17/05/24 12:39:42 INFO deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id 17/05/24 12:39:42 INFO deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id 17/05/24 12:39:42 INFO deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap 17/05/24 12:39:42 INFO deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition 17/05/24 12:39:42 INFO FileOutputCommitter: File Output Committer Algorithm version is 1 17/05/24 12:39:42 INFO SQLHadoopMapReduceCommitProtocol: Using output committer class org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter 17/05/24 12:39:44 ERROR CodeGenerator: failed to compile: org.codehaus.janino.JaninoRuntimeException: Code of method "processNext()V" of class "org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator" grows beyond 64 KB /* 001 */ public Object generate(Object[] references) { /* 002 */ return new GeneratedIterator(references); /* 003 */ } /* 004 */ /* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator { /* 006 */ private Object[] references; /* 007 */ private scala.collection.Iterator[] inputs; /* 008 */ private scala.collection.Iterator scan_input; /* 009 */ private org.apache.spark.sql.execution.metric.SQLMetric scan_numOutputRows; /* 010 */ private org.apache.spark.sql.execution.metric.SQLMetric scan_scanTime; /* 011 */ private long scan_scanTime1; /* 012 */ private org.apache.spark.sql.execution.vectorized.ColumnarBatch scan_batch; /* 013 */ private int scan_batchIdx; /* 014 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance0; /* 015 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance1; /* 016 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance2; /* 017 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance3; /* 018 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance4; /* 019 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance5; /* 020 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance6; /* 021 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance7; /* 022 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance8; /* 023 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance9; /* 024 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance10; /* 025 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance11; /* 026 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance12; /* 027 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance13; /* 028 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance14; /* 029 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance15; /* 030 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance16; /* 031 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance17; /* 032 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance18; /* 033 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance19; /* 034 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance20; /* 035 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance21; /* 036 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance22; /* 037 */ private org.apache.spark.sql.execution.vectorized.ColumnVector scan_colInstance23; |
Administrator
|
Hi Rana
Your this query is in Spark-shell ? Please try the below script: import org.apache.log4j.Logger import org.apache.log4j.Level Logger.getLogger("org").setLevel(Level.OFF) Logger.getLogger("akka").setLevel(Level.OFF) Regards Liang
|
Administrator
|
Hi Rana
Please let us know if your issue be solved? Regards Liang 2017-05-25 20:38 GMT+08:00 Liang Chen <[hidden email]>: > Hi Rana > > Your this query is in Spark-shell ? > Please try the below script: > > import org.apache.log4j.Logger > import org.apache.log4j.Level > Logger.getLogger("org").setLevel(Level.OFF) > Logger.getLogger("akka").setLevel(Level.OFF) > > > Regards > Liang > > Rana Faisal Munir wrote > > Hi, > > > > Today, I was running a filter query ("SELECT * FROM widetable WHERE > > col_long_0 = 0") on a wide table with 1187 columns and Spark started > > printing the below output. It spills alot of log which I want to turn > > off. There is any option to turn it off. I have tried both option > > (ERROR,INFO) in log4j.properties file. It did not work for me. > > > > Thank you > > > > Regards > > Faisal > > > > > > 17/05/24 12:39:41 INFO CarbonLateDecodeRule: main Starting to optimize > > plan > > 17/05/24 12:39:41 INFO CarbonLateDecodeRule: main Skip CarbonOptimizer > > 17/05/24 12:39:42 INFO deprecation: mapred.job.id is deprecated. > > Instead, use mapreduce.job.id > > 17/05/24 12:39:42 INFO deprecation: mapred.tip.id is deprecated. > > Instead, use mapreduce.task.id > > 17/05/24 12:39:42 INFO deprecation: mapred.task.id is deprecated. > > Instead, use mapreduce.task.attempt.id > > 17/05/24 12:39:42 INFO deprecation: mapred.task.is.map is deprecated. > > Instead, use mapreduce.task.ismap > > 17/05/24 12:39:42 INFO deprecation: mapred.task.partition is deprecated. > > Instead, use mapreduce.task.partition > > 17/05/24 12:39:42 INFO FileOutputCommitter: File Output Committer > > Algorithm version is 1 > > 17/05/24 12:39:42 INFO SQLHadoopMapReduceCommitProtocol: Using output > > committer class org.apache.hadoop.mapreduce. > lib.output.FileOutputCommitter > > 17/05/24 12:39:44 ERROR CodeGenerator: failed to compile: > > org.codehaus.janino.JaninoRuntimeException: Code of method > > "processNext()V" of class > > "org.apache.spark.sql.catalyst.expressions.GeneratedClass$ > GeneratedIterator" > > grows beyond 64 KB > > /* 001 */ public Object generate(Object[] references) { > > /* 002 */ return new GeneratedIterator(references); > > /* 003 */ } > > /* 004 */ > > /* 005 */ final class GeneratedIterator extends > > org.apache.spark.sql.execution.BufferedRowIterator { > > /* 006 */ private Object[] references; > > /* 007 */ private scala.collection.Iterator[] inputs; > > /* 008 */ private scala.collection.Iterator scan_input; > > /* 009 */ private org.apache.spark.sql.execution.metric.SQLMetric > > scan_numOutputRows; > > /* 010 */ private org.apache.spark.sql.execution.metric.SQLMetric > > scan_scanTime; > > /* 011 */ private long scan_scanTime1; > > /* 012 */ private > > org.apache.spark.sql.execution.vectorized.ColumnarBatch scan_batch; > > /* 013 */ private int scan_batchIdx; > > /* 014 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance0; > > /* 015 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance1; > > /* 016 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance2; > > /* 017 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance3; > > /* 018 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance4; > > /* 019 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance5; > > /* 020 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance6; > > /* 021 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance7; > > /* 022 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance8; > > /* 023 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance9; > > /* 024 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance10; > > /* 025 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance11; > > /* 026 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance12; > > /* 027 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance13; > > /* 028 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance14; > > /* 029 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance15; > > /* 030 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance16; > > /* 031 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance17; > > /* 032 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance18; > > /* 033 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance19; > > /* 034 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance20; > > /* 035 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance21; > > /* 036 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance22; > > /* 037 */ private > > org.apache.spark.sql.execution.vectorized.ColumnVector > scan_colInstance23; > > > > > > -- > View this message in context: http://apache-carbondata-dev- > mailing-list-archive.1130556.n5.nabble.com/Logging-problem- > tp13170p13219.html > Sent from the Apache CarbonData Dev Mailing List archive mailing list > archive at Nabble.com. > -- Regards Liang |
Hi Liang,
I made changes in log4j.properties file of Spark. I changed INFO with ERROR to stop this issue. Thank you Regards Faisal On 26/05/2017 17:51, Liang Chen wrote: > Hi Rana > > Please let us know if your issue be solved? > > Regards > Liang > > 2017-05-25 20:38 GMT+08:00 Liang Chen <[hidden email]>: > >> Hi Rana >> >> Your this query is in Spark-shell ? >> Please try the below script: >> >> import org.apache.log4j.Logger >> import org.apache.log4j.Level >> Logger.getLogger("org").setLevel(Level.OFF) >> Logger.getLogger("akka").setLevel(Level.OFF) >> >> >> Regards >> Liang >> >> Rana Faisal Munir wrote >>> Hi, >>> >>> Today, I was running a filter query ("SELECT * FROM widetable WHERE >>> col_long_0 = 0") on a wide table with 1187 columns and Spark started >>> printing the below output. It spills alot of log which I want to turn >>> off. There is any option to turn it off. I have tried both option >>> (ERROR,INFO) in log4j.properties file. It did not work for me. >>> >>> Thank you >>> >>> Regards >>> Faisal >>> >>> >>> 17/05/24 12:39:41 INFO CarbonLateDecodeRule: main Starting to optimize >>> plan >>> 17/05/24 12:39:41 INFO CarbonLateDecodeRule: main Skip CarbonOptimizer >>> 17/05/24 12:39:42 INFO deprecation: mapred.job.id is deprecated. >>> Instead, use mapreduce.job.id >>> 17/05/24 12:39:42 INFO deprecation: mapred.tip.id is deprecated. >>> Instead, use mapreduce.task.id >>> 17/05/24 12:39:42 INFO deprecation: mapred.task.id is deprecated. >>> Instead, use mapreduce.task.attempt.id >>> 17/05/24 12:39:42 INFO deprecation: mapred.task.is.map is deprecated. >>> Instead, use mapreduce.task.ismap >>> 17/05/24 12:39:42 INFO deprecation: mapred.task.partition is deprecated. >>> Instead, use mapreduce.task.partition >>> 17/05/24 12:39:42 INFO FileOutputCommitter: File Output Committer >>> Algorithm version is 1 >>> 17/05/24 12:39:42 INFO SQLHadoopMapReduceCommitProtocol: Using output >>> committer class org.apache.hadoop.mapreduce. >> lib.output.FileOutputCommitter >>> 17/05/24 12:39:44 ERROR CodeGenerator: failed to compile: >>> org.codehaus.janino.JaninoRuntimeException: Code of method >>> "processNext()V" of class >>> "org.apache.spark.sql.catalyst.expressions.GeneratedClass$ >> GeneratedIterator" >>> grows beyond 64 KB >>> /* 001 */ public Object generate(Object[] references) { >>> /* 002 */ return new GeneratedIterator(references); >>> /* 003 */ } >>> /* 004 */ >>> /* 005 */ final class GeneratedIterator extends >>> org.apache.spark.sql.execution.BufferedRowIterator { >>> /* 006 */ private Object[] references; >>> /* 007 */ private scala.collection.Iterator[] inputs; >>> /* 008 */ private scala.collection.Iterator scan_input; >>> /* 009 */ private org.apache.spark.sql.execution.metric.SQLMetric >>> scan_numOutputRows; >>> /* 010 */ private org.apache.spark.sql.execution.metric.SQLMetric >>> scan_scanTime; >>> /* 011 */ private long scan_scanTime1; >>> /* 012 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnarBatch scan_batch; >>> /* 013 */ private int scan_batchIdx; >>> /* 014 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance0; >>> /* 015 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance1; >>> /* 016 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance2; >>> /* 017 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance3; >>> /* 018 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance4; >>> /* 019 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance5; >>> /* 020 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance6; >>> /* 021 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance7; >>> /* 022 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance8; >>> /* 023 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance9; >>> /* 024 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance10; >>> /* 025 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance11; >>> /* 026 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance12; >>> /* 027 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance13; >>> /* 028 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance14; >>> /* 029 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance15; >>> /* 030 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance16; >>> /* 031 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance17; >>> /* 032 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance18; >>> /* 033 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance19; >>> /* 034 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance20; >>> /* 035 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance21; >>> /* 036 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance22; >>> /* 037 */ private >>> org.apache.spark.sql.execution.vectorized.ColumnVector >> scan_colInstance23; >> >> >> >> >> >> -- >> View this message in context: http://apache-carbondata-dev- >> mailing-list-archive.1130556.n5.nabble.com/Logging-problem- >> tp13170p13219.html >> Sent from the Apache CarbonData Dev Mailing List archive mailing list >> archive at Nabble.com. >> > > |
Free forum by Nabble | Edit this page |