Hi Community,
The BETWEEN AND work as >= AND <, I guess is should be >= AND <=. My env is spark2.2.2 + carbondata1.4.1 %Carbondata scala> carbon.time(carbon.sql( | s"""SELECT timeseries(date, 'DAY') as day, market_code, device_code, country_code, category_id, | |sum(est_free_app_download), sum(est_paid_app_download), sum(est_revenue) | |FROM store WHERE date BETWEEN '2016-09-01' AND '2016-09-06' AND device_code='ios-phone' AND country_code='EE' AND category_id=100021 | |GROUP BY timeseries(date, 'DAY'), market_code, device_code, country_code, category_id""" | .stripMargin).show(truncate=false) | ) +-------------------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ |day |market_code|device_code|country_code|category_id|sum(est_free_app_download)|sum(est_paid_app_download)|sum(est_revenue)| +-------------------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ |2016-09-02 00:00:00|apple-store|ios-phone |EE |100021 |30807 |14092 |648 | |2016-09-04 00:00:00|apple-store|ios-phone |EE |100021 |32137 |14088 |875 | |2016-09-05 00:00:00|apple-store|ios-phone |EE |100021 |30774 |14083 |930 | |2016-09-01 00:00:00|apple-store|ios-phone |EE |100021 |30408 |14096 |932 | |2016-09-03 00:00:00|apple-store|ios-phone |EE |100021 |32476 |14101 |818 | +-------------------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ %pyspark ( spark.read .parquet("s3a://b2b-prod-int-data-pipeline-unified/unified/app-ss.storeint.v1/metric") .where("date BETWEEN '2016-09-01' AND '2016-09-06' AND device_code='ios-phone' AND country_code='EE' AND category_id=100021") .groupBy("date", "market_code", "device_code", "country_code", "category_id") .agg({"est_free_app_download": "sum", "est_paid_app_download": "sum", "est_revenue": "sum"}) .show() ) +----------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ | date|market_code|device_code|country_code|category_id|sum(est_free_app_download)|sum(est_paid_app_download)|sum(est_revenue)| +----------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ |2016-09-04|apple-store| ios-phone| EE| 100021| 32137| 14088| 875| |2016-09-06|apple-store| ios-phone| EE| 100021| 31425| 14103| 893| |2016-09-01|apple-store| ios-phone| EE| 100021| 30408| 14096| 932| |2016-09-05|apple-store| ios-phone| EE| 100021| 30774| 14083| 930| |2016-09-03|apple-store| ios-phone| EE| 100021| 32476| 14101| 818| |2016-09-02|apple-store| ios-phone| EE| 100021| 30807| 14092| 648| +----------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ -- Sent from: http://apache-carbondata-dev-mailing-list-archive.1130556.n5.nabble.com/ |
Hi Aaron,
I am able to reproduce this issue. I have raised PR: https://github.com/apache/carbondata/pull/2787 -Regards Kumar Vishal On Thu, Sep 27, 2018 at 2:24 PM aaron <[hidden email]> wrote: > Hi Community, > > The BETWEEN AND work as >= AND <, I guess is should be >= AND <=. My env > is > spark2.2.2 + carbondata1.4.1 > > %Carbondata > > scala> carbon.time(carbon.sql( > | s"""SELECT timeseries(date, 'DAY') as day, market_code, > device_code, country_code, category_id, > | |sum(est_free_app_download), sum(est_paid_app_download), > sum(est_revenue) > | |FROM store WHERE date BETWEEN '2016-09-01' AND > '2016-09-06' > AND device_code='ios-phone' AND country_code='EE' AND category_id=100021 > | |GROUP BY timeseries(date, 'DAY'), market_code, > device_code, > country_code, category_id""" > | .stripMargin).show(truncate=false) > | ) > > +-------------------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ > |day > > |market_code|device_code|country_code|category_id|sum(est_free_app_download)|sum(est_paid_app_download)|sum(est_revenue)| > > +-------------------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ > |2016-09-02 00:00:00|apple-store|ios-phone |EE |100021 > |30807 > |14092 |648 | > |2016-09-04 00:00:00|apple-store|ios-phone |EE |100021 > |32137 > |14088 |875 | > |2016-09-05 00:00:00|apple-store|ios-phone |EE |100021 > |30774 > |14083 |930 | > |2016-09-01 00:00:00|apple-store|ios-phone |EE |100021 > |30408 > |14096 |932 | > |2016-09-03 00:00:00|apple-store|ios-phone |EE |100021 > |32476 > |14101 |818 | > > +-------------------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ > > > > > %pyspark > > ( > spark.read > > > .parquet("s3a://b2b-prod-int-data-pipeline-unified/unified/app-ss.storeint.v1/metric") > .where("date BETWEEN '2016-09-01' AND '2016-09-06' AND > device_code='ios-phone' AND country_code='EE' AND category_id=100021") > .groupBy("date", "market_code", "device_code", "country_code", > "category_id") > .agg({"est_free_app_download": "sum", "est_paid_app_download": "sum", > "est_revenue": "sum"}) > .show() > ) > > > +----------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ > | > > date|market_code|device_code|country_code|category_id|sum(est_free_app_download)|sum(est_paid_app_download)|sum(est_revenue)| > > +----------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ > |2016-09-04|apple-store| ios-phone| EE| 100021| > > 32137| 14088| 875| > |2016-09-06|apple-store| ios-phone| EE| 100021| > > 31425| 14103| 893| > |2016-09-01|apple-store| ios-phone| EE| 100021| > > 30408| 14096| 932| > |2016-09-05|apple-store| ios-phone| EE| 100021| > > 30774| 14083| 930| > |2016-09-03|apple-store| ios-phone| EE| 100021| > > 32476| 14101| 818| > |2016-09-02|apple-store| ios-phone| EE| 100021| > > 30807| 14092| 648| > > +----------+-----------+-----------+------------+-----------+--------------------------+--------------------------+----------------+ > > > > > -- > Sent from: > http://apache-carbondata-dev-mailing-list-archive.1130556.n5.nabble.com/ >
kumar vishal
|
Cool! Thanks a lot for your effort!
-- Sent from: http://apache-carbondata-dev-mailing-list-archive.1130556.n5.nabble.com/ |
Free forum by Nabble | Edit this page |