[jira] [Created] (CARBONDATA-3852) CCD Merge with Partition Table is giving different results in different spark deploy modes

classic Classic list List threaded Threaded
1 message Options
Reply | Threaded
Open this post in threaded view
|

[jira] [Created] (CARBONDATA-3852) CCD Merge with Partition Table is giving different results in different spark deploy modes

Akash R Nilugal (Jira)
Sachin Ramachandra Setty created CARBONDATA-3852:
----------------------------------------------------

             Summary: CCD Merge with Partition Table is giving different results in different spark deploy modes
                 Key: CARBONDATA-3852
                 URL: https://issues.apache.org/jira/browse/CARBONDATA-3852
             Project: CarbonData
          Issue Type: Bug
          Components: spark-integration
    Affects Versions: 2.0.0
            Reporter: Sachin Ramachandra Setty


The result sets are different when run the sql queries in spark-shell --master local and spark-shell --master yarn (Two Different Spark Deploy Modes)

{code}
import scala.collection.JavaConverters._
import java.sql.Date
import org.apache.spark.sql._
import org.apache.spark.sql.CarbonSession._
import org.apache.spark.sql.catalyst.TableIdentifier
import org.apache.spark.sql.execution.command.mutation.merge.{CarbonMergeDataSetCommand, DeleteAction, InsertAction, InsertInHistoryTableAction, MergeDataSetMatches, MergeMatch, UpdateAction, WhenMatched, WhenNotMatched, WhenNotMatchedAndExistsOnlyOnTarget}

import org.apache.spark.sql.functions._
import org.apache.spark.sql.test.util.QueryTest
import org.apache.spark.sql.types.{BooleanType, DateType, IntegerType, StringType, StructField, StructType}
import spark.implicits._

val df1 = sc.parallelize(1 to 10, 4).map{ x => ("id"+x, s"order$x",s"customer$x", x*10, x*75, 1)}.toDF("id", "name", "c_name", "quantity", "price", "state")


df1.write.format("carbondata").option("tableName", "order").mode(SaveMode.Overwrite).save()
val dwframe = spark.read.format("carbondata").option("tableName", "order").load()
val dwSelframe = dwframe.as("A")


val ds1 = sc.parallelize(3 to 10, 4)
      .map {x =>
        if (x <= 4) {
          ("id"+x, s"order$x",s"customer$x", x*10, x*75, 2)
        } else {
          ("id"+x, s"order$x",s"customer$x", x*10, x*75, 1)
        }
      }.toDF("id", "name", "c_name", "quantity", "price", "state")
         

val ds2 = sc.parallelize(1 to 2, 4).map {x => ("newid"+x, s"order$x",s"customer$x", x*10, x*75, 1)}.toDS().toDF()
val ds3 = ds1.union(ds2)
val odsframe = ds3.as("B")
       
sql("drop table if exists target").show()

val initframe = spark.createDataFrame(Seq(
  Row("a", "0"),
  Row("b", "1"),
  Row("c", "2"),
  Row("d", "3")
).asJava, StructType(Seq(StructField("key", StringType), StructField("value", StringType))))

initframe.write
  .format("carbondata")
  .option("tableName", "target")
  .option("partitionColumns", "value")
  .mode(SaveMode.Overwrite)
  .save()
 
val target = spark.read.format("carbondata").option("tableName", "target").load()

var ccd =
  spark.createDataFrame(Seq(
    Row("a", "10", false,  0),
    Row("a", null, true, 1),  
    Row("b", null, true, 2),  
    Row("c", null, true, 3),  
    Row("c", "20", false, 4),
    Row("c", "200", false, 5),
    Row("e", "100", false, 6)
  ).asJava,
    StructType(Seq(StructField("key", StringType),
      StructField("newValue", StringType),
      StructField("deleted", BooleanType), StructField("time", IntegerType))))
         
ccd.createOrReplaceTempView("changes")

ccd = sql("SELECT key, latest.newValue as newValue, latest.deleted as deleted FROM ( SELECT key, max(struct(time, newValue, deleted)) as latest FROM changes GROUP BY key)")

val updateMap = Map("key" -> "B.key", "value" -> "B.newValue").asInstanceOf[Map[Any, Any]]

val insertMap = Map("key" -> "B.key", "value" -> "B.newValue").asInstanceOf[Map[Any, Any]]

target.as("A").merge(ccd.as("B"), "A.key=B.key").
  whenMatched("B.deleted=false").
  updateExpr(updateMap).
  whenNotMatched("B.deleted=false").
  insertExpr(insertMap).
  whenMatched("B.deleted=true").
  delete().execute()
 
{code}



--
This message was sent by Atlassian Jira
(v8.3.4#803005)