[
https://issues.apache.org/jira/browse/CARBONDATA-1366?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Zhichao Zhang resolved CARBONDATA-1366.
----------------------------------------
Resolution: Fixed
> When sort_scope=global_sort, use 'StorageLevel.MEMORY_AND_DISK_SER' instead of 'StorageLevel.MEMORY_AND_DISK' for 'convertRDD' persisting to improve loading performance
> -------------------------------------------------------------------------------------------------------------------------------------------------------------------------
>
> Key: CARBONDATA-1366
> URL:
https://issues.apache.org/jira/browse/CARBONDATA-1366> Project: CarbonData
> Issue Type: Bug
> Components: data-load, spark-integration
> Affects Versions: 1.2.0
> Reporter: Zhichao Zhang
> Assignee: Zhichao Zhang
> Priority: Minor
> Fix For: 1.2.0
>
> Time Spent: 4h 20m
> Remaining Estimate: 0h
>
> My testing env and configs are as followings:
> Env:
> 6 executors, 9G mem + 6 cores per executor
> Configs:
> SINGLE_PASS=true
> SORT_SCOPE=GLOBAL_SORT
> spark.memory.fraction=0.5
> if using 'convertRDD.persist(StorageLevel.MEMORY_AND_DISK_SER)' in method 'org.apache.carbondata.spark.load.DataLoadProcessBuilderOnSpark.loadDataUsingGlobalSort', it takes about 7.2 min to load 144136697 lines (10.9 G parquet files), and if using 'convertRDD.persist(StorageLevel.MEMORY_AND_DISK)', it takes about 9.5 min to load 144136697 lines.
--
This message was sent by Atlassian JIRA
(v6.4.14#64029)