[jira] [Updated] (CARBONDATA-1072) Streaming Ingestion Feature

classic Classic list List threaded Threaded
1 message Options
Reply | Threaded
Open this post in threaded view
|

[jira] [Updated] (CARBONDATA-1072) Streaming Ingestion Feature

Akash R Nilugal (Jira)

     [ https://issues.apache.org/jira/browse/CARBONDATA-1072?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]

Liang Chen updated CARBONDATA-1072:
-----------------------------------
    Affects Version/s:     (was: 1.1.0)
                       NONE

> Streaming Ingestion Feature
> ----------------------------
>
>                 Key: CARBONDATA-1072
>                 URL: https://issues.apache.org/jira/browse/CARBONDATA-1072
>             Project: CarbonData
>          Issue Type: New Feature
>          Components: core, data-load, data-query, examples, file-format, spark-integration, sql
>    Affects Versions: NONE
>            Reporter: Aniket Adnaik
>             Fix For: NONE
>
>
> High level break down of work Items/Implementation phases:
> Design document will be attached soon.
>  
> Phase – 1 – Spark Structured Streaming with regular Carbondata Format
> ----------------------------
>     This phase will mainly focus on supporting Streaming ingestion using
>     Spark Structured streaming
>     1. Write Path Implementation
>        - Integration with Spark’s Structured Streaming framework  
>            (FileStreamSink etc)
>        - StreamingOutputWriter (StreamingOuputWriterFactory)
>        - Prepare Write  (Schema Validation, Segment creation,
>           Streaming file creation etc)
>        - StreamingRecordWriter ( Data conversion from Catalyst InternalRow
>          to Carbondata compatible format , make use of new load path)
>      2. Read Path Implementation (some overlap with phase-2)
>       - Modify getsplits() to read from Streaming Segment
>       - Read commited info from meta data to get correct offsets
>       - Make use of Min-Max index if available
>       - Use sequential scan - data is unsorted , cannot use Btree index
>     3. Compaction
>      - Minor Compaction
>      - Major Compaction
>    4. Metadata Management
>      - Streaming metadata store (e.g. Offsets, timestamps etc.)
>    
>    5. Failure Recovery
>       - Rollback on failure
>       - Handle asynchronous writes to CarbonData (using hflush)
> -----------------------------
> Phase – 2 : Spark Structured Streaming with Appendable CarbonData format
>      1.Streaming File Format
>      - Writers use V3 file format for appending Columnar unsorted
>        data blockets
>      - Modify Readers to read from appendable streaming file format
> -----------------------------
> Phase -3 :
>     1. Inter-opertability Support
>      - Functionality with other features/Components
>      - Concurrent queries with streaming ingestion
>      - Concurrent operations with Streaming Ingestion (e.g. Compaction,
>       Alter table, Secondary Index etc.)
>     2. Kafka Connect Ingestion / Carbondata connector
>      - Direct ingestion from Kafka Connect without Spark Structured
>         Streaming
>      - Separate Kafka  Connector to receive data through network port
>      - Data commit and Offset management
> -----------------------------
> Phase-4 : Support for other streaming engines
>     - Analysis of Streaming APIs/interface  with other streaming engines
>     - Implementation of connectors  for different streaming engines storm,
>        flink , flume, etc.
> ----------------------------
> Phase -5 : In-memory Streaming table (probable feature)
>    1. In-memory Cache for Streaming data
>      - Fault tolerant  in-memory buffering / checkpoint with WAL
>      - Readers read from in-memory tables if available
>      - Background threads for writing streaming data ,etc.



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)