[ https://issues.apache.org/jira/browse/CARBONDATA-1726?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Chetan Bhat updated CARBONDATA-1726: ------------------------------------ Description: Steps : // prepare csv file for batch loading cd /srv/spark2.2Bigdata/install/hadoop/datanode/bin // generate streamSample.csv 100000001,batch_1,city_1,0.1,school_1:school_11$20 100000002,batch_2,city_2,0.2,school_2:school_22$30 100000003,batch_3,city_3,0.3,school_3:school_33$40 100000004,batch_4,city_4,0.4,school_4:school_44$50 100000005,batch_5,city_5,0.5,school_5:school_55$60 // put to hdfs /tmp/streamSample.csv ./hadoop fs -put streamSample.csv /tmp // spark-beeline cd /srv/spark2.2Bigdata/install/spark/sparkJdbc bin/spark-submit --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --class org.apache.carbondata.spark.thriftserver.CarbonThriftServer /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar "hdfs://hacluster/user/sparkhive/warehouse" bin/beeline -u jdbc:hive2://10.18.98.34:23040 CREATE TABLE stream_table( id INT, name STRING, city STRING, salary FLOAT ) STORED BY 'carbondata' TBLPROPERTIES('streaming'='true', 'sort_columns'='name'); LOAD DATA LOCAL INPATH 'hdfs://hacluster/chetan/streamSample.csv' INTO TABLE stream_table OPTIONS('HEADER'='false'); // spark-shell cd /srv/spark2.2Bigdata/install/spark/sparkJdbc bin/spark-shell --master yarn-client import java.io.{File, PrintWriter} import java.net.ServerSocket import org.apache.spark.sql.{CarbonEnv, SparkSession} import org.apache.spark.sql.hive.CarbonRelation import org.apache.spark.sql.streaming.{ProcessingTime, StreamingQuery} import org.apache.carbondata.core.constants.CarbonCommonConstants import org.apache.carbondata.core.util.CarbonProperties import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") import org.apache.spark.sql.CarbonSession._ val carbonSession = SparkSession. builder(). appName("StreamExample"). config("spark.sql.warehouse.dir", "hdfs://hacluster/user/sparkhive/warehouse"). config("javax.jdo.option.ConnectionURL", "jdbc:mysql://10.18.98.34:3306/sparksql?characterEncoding=UTF-8"). config("javax.jdo.option.ConnectionDriverName", "com.mysql.jdbc.Driver"). config("javax.jdo.option.ConnectionPassword", "huawei"). config("javax.jdo.option.ConnectionUserName", "sparksql"). getOrCreateCarbonSession() carbonSession.sparkContext.setLogLevel("ERROR") carbonSession.sql("select * from stream_table").show Issue : Select query from spark-shell does not execute successfully for streaming table load. When the executor and driver cores and memory is increased while launching the spark shell the issue still occurs. bin/spark-shell --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 scala> import org.apache.carbondata.core.constants.CarbonCommonConstants import org.apache.carbondata.core.constants.CarbonCommonConstants scala> import org.apache.carbondata.core.util.CarbonProperties import org.apache.carbondata.core.util.CarbonProperties scala> import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} scala> scala> CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") res29: org.apache.carbondata.core.util.CarbonProperties = org.apache.carbondata.core.util.CarbonProperties@67b056e7 scala> scala> import org.apache.spark.sql.CarbonSession._ import org.apache.spark.sql.CarbonSession._ scala> scala> val carbonSession = SparkSession. | builder(). | appName("StreamExample"). | config("spark.sql.warehouse.dir", "hdfs://hacluster/user/sparkhive/warehouse"). | config("javax.jdo.option.ConnectionURL", "jdbc:mysql://10.18.98.34:3306/sparksql?characterEncoding=UTF-8"). | config("javax.jdo.option.ConnectionDriverName", "com.mysql.jdbc.Driver"). | config("javax.jdo.option.ConnectionPassword", "huawei"). | config("javax.jdo.option.ConnectionUserName", "sparksql"). | getOrCreateCarbonSession() carbonSession: org.apache.spark.sql.SparkSession = org.apache.spark.sql.CarbonSession@1d0590bc scala> | carbonSession.sparkContext.setLogLevel("ERROR") scala> carbonSession.sql("select * from stream_table").show org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 25.0 failed 4 times, most recent failure: Lost task 0.3 in stage 25.0 (TID 65, BLR1000014269, executor 8): java.lang.IllegalStateException: unread block data at java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2424) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1383) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371) at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75) at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:258) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112) at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795) at org.apache.spark.sql.Dataset.head(Dataset.scala:2112) at org.apache.spark.sql.Dataset.take(Dataset.scala:2327) at org.apache.spark.sql.Dataset.showString(Dataset.scala:248) at org.apache.spark.sql.Dataset.show(Dataset.scala:636) at org.apache.spark.sql.Dataset.show(Dataset.scala:595) at org.apache.spark.sql.Dataset.show(Dataset.scala:604) ... 50 elided Caused by: java.lang.IllegalStateException: unread block data at java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2424) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1383) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371) at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75) at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:258) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Expected : Select query from spark-shell should execute successfully for streaming table load. was: Steps : // prepare csv file for batch loading cd /srv/spark2.2Bigdata/install/hadoop/datanode/bin // generate streamSample.csv 100000001,batch_1,city_1,0.1,school_1:school_11$20 100000002,batch_2,city_2,0.2,school_2:school_22$30 100000003,batch_3,city_3,0.3,school_3:school_33$40 100000004,batch_4,city_4,0.4,school_4:school_44$50 100000005,batch_5,city_5,0.5,school_5:school_55$60 // put to hdfs /tmp/streamSample.csv ./hadoop fs -put streamSample.csv /tmp // spark-beeline cd /srv/spark2.2Bigdata/install/spark/sparkJdbc bin/spark-submit --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --class org.apache.carbondata.spark.thriftserver.CarbonThriftServer /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar "hdfs://hacluster/user/sparkhive/warehouse" bin/beeline -u jdbc:hive2://10.18.98.34:23040 CREATE TABLE stream_table( id INT, name STRING, city STRING, salary FLOAT ) STORED BY 'carbondata' TBLPROPERTIES('streaming'='true', 'sort_columns'='name'); LOAD DATA LOCAL INPATH 'hdfs://hacluster/chetan/streamSample.csv' INTO TABLE stream_table OPTIONS('HEADER'='false'); // spark-shell cd /srv/spark2.2Bigdata/install/spark/sparkJdbc bin/spark-shell --master yarn-client import java.io.{File, PrintWriter} import java.net.ServerSocket import org.apache.spark.sql.{CarbonEnv, SparkSession} import org.apache.spark.sql.hive.CarbonRelation import org.apache.spark.sql.streaming.{ProcessingTime, StreamingQuery} import org.apache.carbondata.core.constants.CarbonCommonConstants import org.apache.carbondata.core.util.CarbonProperties import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") import org.apache.spark.sql.CarbonSession._ val carbonSession = SparkSession. builder(). appName("StreamExample"). config("spark.sql.warehouse.dir", "hdfs://hacluster/user/sparkhive/warehouse"). config("javax.jdo.option.ConnectionURL", "jdbc:mysql://10.18.98.34:3306/sparksql?characterEncoding=UTF-8"). config("javax.jdo.option.ConnectionDriverName", "com.mysql.jdbc.Driver"). config("javax.jdo.option.ConnectionPassword", "huawei"). config("javax.jdo.option.ConnectionUserName", "sparksql"). getOrCreateCarbonSession() carbonSession.sparkContext.setLogLevel("ERROR") carbonSession.sql("select * from stream_table").show Issue : Select query from spark-shell does not execute successfully for streaming table load. When the executor and driver cores and memory is increased while launching the spark shell the issue still occurs. bin/spark-shell --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 scala> carbonSession.sql("select * from stream_table").show org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 25.0 failed 4 times, most recent failure: Lost task 0.3 in stage 25.0 (TID 65, BLR1000014269, executor 8): java.lang.IllegalStateException: unread block data at java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2424) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1383) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371) at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75) at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:258) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112) at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795) at org.apache.spark.sql.Dataset.head(Dataset.scala:2112) at org.apache.spark.sql.Dataset.take(Dataset.scala:2327) at org.apache.spark.sql.Dataset.showString(Dataset.scala:248) at org.apache.spark.sql.Dataset.show(Dataset.scala:636) at org.apache.spark.sql.Dataset.show(Dataset.scala:595) at org.apache.spark.sql.Dataset.show(Dataset.scala:604) ... 50 elided Caused by: java.lang.IllegalStateException: unread block data at java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2424) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1383) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371) at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75) at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:258) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Expected : Select query from spark-shell should execute successfully for streaming table load. > Carbon1.3.0-Streaming - Select query from spark-shell does not execute successfully for streaming table load > ------------------------------------------------------------------------------------------------------------ > > Key: CARBONDATA-1726 > URL: https://issues.apache.org/jira/browse/CARBONDATA-1726 > Project: CarbonData > Issue Type: Bug > Components: data-query > Affects Versions: 1.3.0 > Environment: 3 node ant cluster SUSE 11 SP4 > Reporter: Chetan Bhat > Priority: Blocker > Labels: Functional > > Steps : > // prepare csv file for batch loading > cd /srv/spark2.2Bigdata/install/hadoop/datanode/bin > // generate streamSample.csv > 100000001,batch_1,city_1,0.1,school_1:school_11$20 > 100000002,batch_2,city_2,0.2,school_2:school_22$30 > 100000003,batch_3,city_3,0.3,school_3:school_33$40 > 100000004,batch_4,city_4,0.4,school_4:school_44$50 > 100000005,batch_5,city_5,0.5,school_5:school_55$60 > // put to hdfs /tmp/streamSample.csv > ./hadoop fs -put streamSample.csv /tmp > // spark-beeline > cd /srv/spark2.2Bigdata/install/spark/sparkJdbc > bin/spark-submit --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --class org.apache.carbondata.spark.thriftserver.CarbonThriftServer /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar "hdfs://hacluster/user/sparkhive/warehouse" > bin/beeline -u jdbc:hive2://10.18.98.34:23040 > CREATE TABLE stream_table( > id INT, > name STRING, > city STRING, > salary FLOAT > ) > STORED BY 'carbondata' > TBLPROPERTIES('streaming'='true', 'sort_columns'='name'); > LOAD DATA LOCAL INPATH 'hdfs://hacluster/chetan/streamSample.csv' INTO TABLE stream_table OPTIONS('HEADER'='false'); > // spark-shell > cd /srv/spark2.2Bigdata/install/spark/sparkJdbc > bin/spark-shell --master yarn-client > import java.io.{File, PrintWriter} > import java.net.ServerSocket > import org.apache.spark.sql.{CarbonEnv, SparkSession} > import org.apache.spark.sql.hive.CarbonRelation > import org.apache.spark.sql.streaming.{ProcessingTime, StreamingQuery} > import org.apache.carbondata.core.constants.CarbonCommonConstants > import org.apache.carbondata.core.util.CarbonProperties > import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} > CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") > import org.apache.spark.sql.CarbonSession._ > val carbonSession = SparkSession. > builder(). > appName("StreamExample"). > config("spark.sql.warehouse.dir", "hdfs://hacluster/user/sparkhive/warehouse"). > config("javax.jdo.option.ConnectionURL", "jdbc:mysql://10.18.98.34:3306/sparksql?characterEncoding=UTF-8"). > config("javax.jdo.option.ConnectionDriverName", "com.mysql.jdbc.Driver"). > config("javax.jdo.option.ConnectionPassword", "huawei"). > config("javax.jdo.option.ConnectionUserName", "sparksql"). > getOrCreateCarbonSession() > > carbonSession.sparkContext.setLogLevel("ERROR") > carbonSession.sql("select * from stream_table").show > Issue : Select query from spark-shell does not execute successfully for streaming table load. > When the executor and driver cores and memory is increased while launching the spark shell the issue still occurs. > bin/spark-shell --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 > scala> import org.apache.carbondata.core.constants.CarbonCommonConstants > import org.apache.carbondata.core.constants.CarbonCommonConstants > scala> import org.apache.carbondata.core.util.CarbonProperties > import org.apache.carbondata.core.util.CarbonProperties > scala> import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} > import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} > scala> > scala> CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") > res29: org.apache.carbondata.core.util.CarbonProperties = org.apache.carbondata.core.util.CarbonProperties@67b056e7 > scala> > scala> import org.apache.spark.sql.CarbonSession._ > import org.apache.spark.sql.CarbonSession._ > scala> > scala> val carbonSession = SparkSession. > | builder(). > | appName("StreamExample"). > | config("spark.sql.warehouse.dir", "hdfs://hacluster/user/sparkhive/warehouse"). > | config("javax.jdo.option.ConnectionURL", "jdbc:mysql://10.18.98.34:3306/sparksql?characterEncoding=UTF-8"). > | config("javax.jdo.option.ConnectionDriverName", "com.mysql.jdbc.Driver"). > | config("javax.jdo.option.ConnectionPassword", "huawei"). > | config("javax.jdo.option.ConnectionUserName", "sparksql"). > | getOrCreateCarbonSession() > carbonSession: org.apache.spark.sql.SparkSession = org.apache.spark.sql.CarbonSession@1d0590bc > scala> > | carbonSession.sparkContext.setLogLevel("ERROR") > scala> carbonSession.sql("select * from stream_table").show > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 25.0 failed 4 times, most recent failure: Lost task 0.3 in stage 25.0 (TID 65, BLR1000014269, executor 8): java.lang.IllegalStateException: unread block data > at java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2424) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1383) > at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993) > at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918) > at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) > at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371) > at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75) > at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:258) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Driver stacktrace: > at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422) > at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) > at scala.Option.foreach(Option.scala:257) > at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944) > at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333) > at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) > at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371) > at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) > at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765) > at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370) > at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377) > at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113) > at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112) > at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795) > at org.apache.spark.sql.Dataset.head(Dataset.scala:2112) > at org.apache.spark.sql.Dataset.take(Dataset.scala:2327) > at org.apache.spark.sql.Dataset.showString(Dataset.scala:248) > at org.apache.spark.sql.Dataset.show(Dataset.scala:636) > at org.apache.spark.sql.Dataset.show(Dataset.scala:595) > at org.apache.spark.sql.Dataset.show(Dataset.scala:604) > ... 50 elided > Caused by: java.lang.IllegalStateException: unread block data > at java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2424) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1383) > at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993) > at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918) > at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) > at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) > at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371) > at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75) > at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:258) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Expected : Select query from spark-shell should execute successfully for streaming table load. -- This message was sent by Atlassian JIRA (v6.4.14#64029) |
Free forum by Nabble | Edit this page |