[ https://issues.apache.org/jira/browse/CARBONDATA-1775?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Chetan Bhat updated CARBONDATA-1775: ------------------------------------ Description: Steps : User starts the thrift server using the command - bin/spark-submit --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --class org.apache.carbondata.spark.thriftserver.CarbonThriftServer /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar "hdfs://hacluster/user/hive/warehouse/carbon.store" User connects to spark shell using the command - bin/spark-shell --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --jars /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar In spark shell User creates a table and does streaming load in the table as per the below socket streaming script. import java.io.{File, PrintWriter} import java.net.ServerSocket import org.apache.spark.sql.{CarbonEnv, SparkSession} import org.apache.spark.sql.hive.CarbonRelation import org.apache.spark.sql.streaming.{ProcessingTime, StreamingQuery} import org.apache.carbondata.core.constants.CarbonCommonConstants import org.apache.carbondata.core.util.CarbonProperties import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") import org.apache.spark.sql.CarbonSession._ val carbonSession = SparkSession. builder(). appName("StreamExample"). getOrCreateCarbonSession("hdfs://hacluster/user/hive/warehouse/david") carbonSession.sparkContext.setLogLevel("INFO") def sql(sql: String) = carbonSession.sql(sql) def writeSocket(serverSocket: ServerSocket): Thread = { val thread = new Thread() { override def run(): Unit = { // wait for client to connection request and accept val clientSocket = serverSocket.accept() val socketWriter = new PrintWriter(clientSocket.getOutputStream()) var index = 0 for (_ <- 1 to 1000) { // write 5 records per iteration for (_ <- 0 to 100) { index = index + 1 socketWriter.println(index.toString + ",name_" + index + ",city_" + index + "," + (index * 10000.00).toString + ",school_" + index + ":school_" + index + index + "$" + index) } socketWriter.flush() Thread.sleep(2000) } socketWriter.close() System.out.println("Socket closed") } } thread.start() thread } def startStreaming(spark: SparkSession, tablePath: CarbonTablePath, tableName: String, port: Int): Thread = { val thread = new Thread() { override def run(): Unit = { var qry: StreamingQuery = null try { val readSocketDF = spark.readStream .format("socket") .option("host", "10.18.98.34") .option("port", port) .load() qry = readSocketDF.writeStream .format("carbondata") .trigger(ProcessingTime("5 seconds")) .option("checkpointLocation", tablePath.getStreamingCheckpointDir) .option("tablePath", tablePath.getPath).option("tableName", tableName) .start() qry.awaitTermination() } catch { case ex: Throwable => ex.printStackTrace() println("Done reading and writing streaming data") } finally { qry.stop() } } } thread.start() thread } val streamTableName = "stream_table" sql(s"CREATE TABLE $streamTableName (id INT,name STRING,city STRING,salary FLOAT) STORED BY 'carbondata' TBLPROPERTIES('streaming'='true', 'sort_columns'='name')") sql(s"LOAD DATA LOCAL INPATH 'hdfs://hacluster/tmp/streamSample.csv' INTO TABLE $streamTableName OPTIONS('HEADER'='true')") sql(s"select * from $streamTableName").show val carbonTable = CarbonEnv.getInstance(carbonSession).carbonMetastore. lookupRelation(Some("default"), streamTableName)(carbonSession).asInstanceOf[CarbonRelation].carbonTable val tablePath = CarbonStorePath.getCarbonTablePath(carbonTable.getAbsoluteTableIdentifier) val port = 7995 val serverSocket = new ServerSocket(port) val socketThread = writeSocket(serverSocket) val streamingThread = startStreaming(carbonSession, tablePath, streamTableName, port) While load is in progress user executes select query on the streaming table from beeline. 0: jdbc:hive2://10.18.98.34:23040> select * from stream_table; *Issue : The Select query fails with java.io.EOFException when socket streaming is in progress.* 0: jdbc:hive2://10.18.98.34:23040> select * from stream_table; Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 1.0 failed 4 times, most recent failure: Lost task 3.3 in stage 1.0 (TID 38, BLR1000014278, executor 7): java.io.EOFException at org.apache.carbondata.hadoop.streaming.StreamBlockletReader.readBytesFromStream(StreamBlockletReader.java:182) at org.apache.carbondata.hadoop.streaming.StreamBlockletReader.readBlockletData(StreamBlockletReader.java:116) at org.apache.carbondata.hadoop.streaming.CarbonStreamRecordReader.scanBlockletAndFillVector(CarbonStreamRecordReader.java:406) at org.apache.carbondata.hadoop.streaming.CarbonStreamRecordReader.nextColumnarBatch(CarbonStreamRecordReader.java:317) at org.apache.carbondata.hadoop.streaming.CarbonStreamRecordReader.nextKeyValue(CarbonStreamRecordReader.java:298) at org.apache.carbondata.spark.rdd.CarbonScanRDD$$anon$1.hasNext(CarbonScanRDD.scala:298) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.scan_nextBatch$(Unknown Source) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Driver stacktrace: (state=,code=0) *Also when user checks the spark shell terminal there are exceptions thrown.* scala> org.apache.spark.sql.streaming.StreamingQueryException: Offsets committed out of order: 100999 followed by 100 scala.sys.package$.error(package.scala:27) org.apache.spark.sql.execution.streaming.TextSocketSource.commit(socket.scala:151) org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:421) org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:420) scala.collection.Iterator$class.foreach(Iterator.scala:893) scala.collection.AbstractIterator.foreach(Iterator.scala:1336) scala.collection.IterableLike$class.foreach(IterableLike.scala:72) org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25) org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply$mcV$sp(StreamExecution.scala:420) org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) === Streaming Query === Identifier: [id = d23c5633-e747-457e-a5c0-69ec09bb183f, runId = 2db93553-fe97-4fa6-b425-278128a42f50] Current Offsets: {org.apache.spark.sql.execution.streaming.TextSocketSource@750267f5: 100} Current State: ACTIVE Thread State: RUNNABLE Logical Plan: org.apache.spark.sql.execution.streaming.TextSocketSource@750267f5 at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:284) at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:177) Caused by: java.lang.RuntimeException: Offsets committed out of order: 100999 followed by 100 at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.execution.streaming.TextSocketSource.commit(socket.scala:151) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:421) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:420) at scala.collection.Iterator$class.foreach(Iterator.scala:893) at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) at org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply$mcV$sp(StreamExecution.scala:420) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:262) at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:46) at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch(StreamExecution.scala:404) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply$mcV$sp(StreamExecution.scala:250) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply(StreamExecution.scala:244) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply(StreamExecution.scala:244) at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:262) at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:46) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1.apply$mcZ$sp(StreamExecution.scala:244) at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:43) at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:239) ... 1 more Done reading and writing streaming data *Expected Output : select query should be successful from beeline on the streaming table.* was: Steps : User starts the thrift server using the command - bin/spark-submit --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --class org.apache.carbondata.spark.thriftserver.CarbonThriftServer /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar "hdfs://hacluster/user/hive/warehouse/carbon.store" User connects to spark shell using the command - bin/spark-shell --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --jars /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar In spark shell User creates a table and does streaming load in the table as per the below socket streaming script. import java.io.{File, PrintWriter} import java.net.ServerSocket import org.apache.spark.sql.{CarbonEnv, SparkSession} import org.apache.spark.sql.hive.CarbonRelation import org.apache.spark.sql.streaming.{ProcessingTime, StreamingQuery} import org.apache.carbondata.core.constants.CarbonCommonConstants import org.apache.carbondata.core.util.CarbonProperties import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") import org.apache.spark.sql.CarbonSession._ val carbonSession = SparkSession. builder(). appName("StreamExample"). getOrCreateCarbonSession("hdfs://hacluster/user/hive/warehouse/david") carbonSession.sparkContext.setLogLevel("INFO") def sql(sql: String) = carbonSession.sql(sql) def writeSocket(serverSocket: ServerSocket): Thread = { val thread = new Thread() { override def run(): Unit = { // wait for client to connection request and accept val clientSocket = serverSocket.accept() val socketWriter = new PrintWriter(clientSocket.getOutputStream()) var index = 0 for (_ <- 1 to 1000) { // write 5 records per iteration for (_ <- 0 to 100) { index = index + 1 socketWriter.println(index.toString + ",name_" + index + ",city_" + index + "," + (index * 10000.00).toString + ",school_" + index + ":school_" + index + index + "$" + index) } socketWriter.flush() Thread.sleep(2000) } socketWriter.close() System.out.println("Socket closed") } } thread.start() thread } def startStreaming(spark: SparkSession, tablePath: CarbonTablePath, tableName: String, port: Int): Thread = { val thread = new Thread() { override def run(): Unit = { var qry: StreamingQuery = null try { val readSocketDF = spark.readStream .format("socket") .option("host", "10.18.98.34") .option("port", port) .load() qry = readSocketDF.writeStream .format("carbondata") .trigger(ProcessingTime("5 seconds")) .option("checkpointLocation", tablePath.getStreamingCheckpointDir) .option("tablePath", tablePath.getPath).option("tableName", tableName) .start() qry.awaitTermination() } catch { case ex: Throwable => ex.printStackTrace() println("Done reading and writing streaming data") } finally { qry.stop() } } } thread.start() thread } val streamTableName = "stream_table" sql(s"CREATE TABLE $streamTableName (id INT,name STRING,city STRING,salary FLOAT) STORED BY 'carbondata' TBLPROPERTIES('streaming'='true', 'sort_columns'='name')") sql(s"LOAD DATA LOCAL INPATH 'hdfs://hacluster/tmp/streamSample.csv' INTO TABLE $streamTableName OPTIONS('HEADER'='true')") sql(s"select * from $streamTableName").show val carbonTable = CarbonEnv.getInstance(carbonSession).carbonMetastore. lookupRelation(Some("default"), streamTableName)(carbonSession).asInstanceOf[CarbonRelation].carbonTable val tablePath = CarbonStorePath.getCarbonTablePath(carbonTable.getAbsoluteTableIdentifier) val port = 7995 val serverSocket = new ServerSocket(port) val socketThread = writeSocket(serverSocket) val streamingThread = startStreaming(carbonSession, tablePath, streamTableName, port) While load is in progress user executes select query on the streaming table from beeline. 0: jdbc:hive2://10.18.98.34:23040> select * from stream_table; *Issue : The Select query fails with java.io.EOFException when socket streaming is in progress.* 0: jdbc:hive2://10.18.98.34:23040> select * from stream_table; Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 1.0 failed 4 times, most recent failure: Lost task 3.3 in stage 1.0 (TID 38, BLR1000014278, executor 7): java.io.EOFException at org.apache.carbondata.hadoop.streaming.StreamBlockletReader.readBytesFromStream(StreamBlockletReader.java:182) at org.apache.carbondata.hadoop.streaming.StreamBlockletReader.readBlockletData(StreamBlockletReader.java:116) at org.apache.carbondata.hadoop.streaming.CarbonStreamRecordReader.scanBlockletAndFillVector(CarbonStreamRecordReader.java:406) at org.apache.carbondata.hadoop.streaming.CarbonStreamRecordReader.nextColumnarBatch(CarbonStreamRecordReader.java:317) at org.apache.carbondata.hadoop.streaming.CarbonStreamRecordReader.nextKeyValue(CarbonStreamRecordReader.java:298) at org.apache.carbondata.spark.rdd.CarbonScanRDD$$anon$1.hasNext(CarbonScanRDD.scala:298) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.scan_nextBatch$(Unknown Source) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Driver stacktrace: (state=,code=0) *Also when user checks the spark shell terminal there are exceptions thrown.* scala> org.apache.spark.sql.streaming.StreamingQueryException: Offsets committed out of order: 100999 followed by 100 scala.sys.package$.error(package.scala:27) org.apache.spark.sql.execution.streaming.TextSocketSource.commit(socket.scala:151) org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:421) org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:420) scala.collection.Iterator$class.foreach(Iterator.scala:893) scala.collection.AbstractIterator.foreach(Iterator.scala:1336) scala.collection.IterableLike$class.foreach(IterableLike.scala:72) org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25) org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply$mcV$sp(StreamExecution.scala:420) org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) === Streaming Query === Identifier: [id = d23c5633-e747-457e-a5c0-69ec09bb183f, runId = 2db93553-fe97-4fa6-b425-278128a42f50] Current Offsets: {org.apache.spark.sql.execution.streaming.TextSocketSource@750267f5: 100} Current State: ACTIVE Thread State: RUNNABLE Logical Plan: org.apache.spark.sql.execution.streaming.TextSocketSource@750267f5 at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:284) at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:177) Caused by: java.lang.RuntimeException: Offsets committed out of order: 100999 followed by 100 at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.execution.streaming.TextSocketSource.commit(socket.scala:151) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:421) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:420) at scala.collection.Iterator$class.foreach(Iterator.scala:893) at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) at org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply$mcV$sp(StreamExecution.scala:420) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:262) at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:46) at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch(StreamExecution.scala:404) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply$mcV$sp(StreamExecution.scala:250) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply(StreamExecution.scala:244) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply(StreamExecution.scala:244) at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:262) at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:46) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1.apply$mcZ$sp(StreamExecution.scala:244) at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:43) at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:239) ... 1 more Done reading and writing streaming data Expected Output : select query should be successful from beeline on the streaming table. > (Carbon1.3.0 - Streaming) Select query fails with java.io.EOFException when data streaming is in progress > ---------------------------------------------------------------------------------------------------------- > > Key: CARBONDATA-1775 > URL: https://issues.apache.org/jira/browse/CARBONDATA-1775 > Project: CarbonData > Issue Type: Bug > Components: data-query > Affects Versions: 1.3.0 > Environment: 3 node ant cluster > Reporter: Chetan Bhat > Labels: DFX > > Steps : > User starts the thrift server using the command - bin/spark-submit --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --class org.apache.carbondata.spark.thriftserver.CarbonThriftServer /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar "hdfs://hacluster/user/hive/warehouse/carbon.store" > User connects to spark shell using the command - bin/spark-shell --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --jars /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar > In spark shell User creates a table and does streaming load in the table as per the below socket streaming script. > import java.io.{File, PrintWriter} > import java.net.ServerSocket > import org.apache.spark.sql.{CarbonEnv, SparkSession} > import org.apache.spark.sql.hive.CarbonRelation > import org.apache.spark.sql.streaming.{ProcessingTime, StreamingQuery} > import org.apache.carbondata.core.constants.CarbonCommonConstants > import org.apache.carbondata.core.util.CarbonProperties > import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} > CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") > import org.apache.spark.sql.CarbonSession._ > val carbonSession = SparkSession. > builder(). > appName("StreamExample"). > getOrCreateCarbonSession("hdfs://hacluster/user/hive/warehouse/david") > > carbonSession.sparkContext.setLogLevel("INFO") > def sql(sql: String) = carbonSession.sql(sql) > def writeSocket(serverSocket: ServerSocket): Thread = { > val thread = new Thread() { > override def run(): Unit = { > // wait for client to connection request and accept > val clientSocket = serverSocket.accept() > val socketWriter = new PrintWriter(clientSocket.getOutputStream()) > var index = 0 > for (_ <- 1 to 1000) { > // write 5 records per iteration > for (_ <- 0 to 100) { > index = index + 1 > socketWriter.println(index.toString + ",name_" + index > + ",city_" + index + "," + (index * 10000.00).toString + > ",school_" + index + ":school_" + index + index + "$" + index) > } > socketWriter.flush() > Thread.sleep(2000) > } > socketWriter.close() > System.out.println("Socket closed") > } > } > thread.start() > thread > } > > def startStreaming(spark: SparkSession, tablePath: CarbonTablePath, tableName: String, port: Int): Thread = { > val thread = new Thread() { > override def run(): Unit = { > var qry: StreamingQuery = null > try { > val readSocketDF = spark.readStream > .format("socket") > .option("host", "10.18.98.34") > .option("port", port) > .load() > qry = readSocketDF.writeStream > .format("carbondata") > .trigger(ProcessingTime("5 seconds")) > .option("checkpointLocation", tablePath.getStreamingCheckpointDir) > .option("tablePath", tablePath.getPath).option("tableName", tableName) > .start() > qry.awaitTermination() > } catch { > case ex: Throwable => > ex.printStackTrace() > println("Done reading and writing streaming data") > } finally { > qry.stop() > } > } > } > thread.start() > thread > } > val streamTableName = "stream_table" > sql(s"CREATE TABLE $streamTableName (id INT,name STRING,city STRING,salary FLOAT) STORED BY 'carbondata' TBLPROPERTIES('streaming'='true', 'sort_columns'='name')") > sql(s"LOAD DATA LOCAL INPATH 'hdfs://hacluster/tmp/streamSample.csv' INTO TABLE $streamTableName OPTIONS('HEADER'='true')") > sql(s"select * from $streamTableName").show > val carbonTable = CarbonEnv.getInstance(carbonSession).carbonMetastore. > lookupRelation(Some("default"), streamTableName)(carbonSession).asInstanceOf[CarbonRelation].carbonTable > val tablePath = CarbonStorePath.getCarbonTablePath(carbonTable.getAbsoluteTableIdentifier) > val port = 7995 > val serverSocket = new ServerSocket(port) > val socketThread = writeSocket(serverSocket) > val streamingThread = startStreaming(carbonSession, tablePath, streamTableName, port) > While load is in progress user executes select query on the streaming table from beeline. > 0: jdbc:hive2://10.18.98.34:23040> select * from stream_table; > *Issue : The Select query fails with java.io.EOFException when socket streaming is in progress.* > 0: jdbc:hive2://10.18.98.34:23040> select * from stream_table; > Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 1.0 failed 4 times, most recent failure: Lost task 3.3 in stage 1.0 (TID 38, BLR1000014278, executor 7): java.io.EOFException > at org.apache.carbondata.hadoop.streaming.StreamBlockletReader.readBytesFromStream(StreamBlockletReader.java:182) > at org.apache.carbondata.hadoop.streaming.StreamBlockletReader.readBlockletData(StreamBlockletReader.java:116) > at org.apache.carbondata.hadoop.streaming.CarbonStreamRecordReader.scanBlockletAndFillVector(CarbonStreamRecordReader.java:406) > at org.apache.carbondata.hadoop.streaming.CarbonStreamRecordReader.nextColumnarBatch(CarbonStreamRecordReader.java:317) > at org.apache.carbondata.hadoop.streaming.CarbonStreamRecordReader.nextKeyValue(CarbonStreamRecordReader.java:298) > at org.apache.carbondata.spark.rdd.CarbonScanRDD$$anon$1.hasNext(CarbonScanRDD.scala:298) > at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.scan_nextBatch$(Unknown Source) > at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) > at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225) > at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) > at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) > at org.apache.spark.scheduler.Task.run(Task.scala:99) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Driver stacktrace: (state=,code=0) > *Also when user checks the spark shell terminal there are exceptions thrown.* > scala> org.apache.spark.sql.streaming.StreamingQueryException: Offsets committed out of order: 100999 followed by 100 scala.sys.package$.error(package.scala:27) > org.apache.spark.sql.execution.streaming.TextSocketSource.commit(socket.scala:151) > org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:421) > org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:420) > scala.collection.Iterator$class.foreach(Iterator.scala:893) > scala.collection.AbstractIterator.foreach(Iterator.scala:1336) > scala.collection.IterableLike$class.foreach(IterableLike.scala:72) > org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25) > org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply$mcV$sp(StreamExecution.scala:420) > org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) > === Streaming Query === > Identifier: [id = d23c5633-e747-457e-a5c0-69ec09bb183f, runId = 2db93553-fe97-4fa6-b425-278128a42f50] > Current Offsets: {org.apache.spark.sql.execution.streaming.TextSocketSource@750267f5: 100} > Current State: ACTIVE > Thread State: RUNNABLE > Logical Plan: > org.apache.spark.sql.execution.streaming.TextSocketSource@750267f5 > at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:284) > at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:177) > Caused by: java.lang.RuntimeException: Offsets committed out of order: 100999 followed by 100 > at scala.sys.package$.error(package.scala:27) > at org.apache.spark.sql.execution.streaming.TextSocketSource.commit(socket.scala:151) > at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:421) > at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:420) > at scala.collection.Iterator$class.foreach(Iterator.scala:893) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) > at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) > at org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25) > at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply$mcV$sp(StreamExecution.scala:420) > at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) > at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) > at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:262) > at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:46) > at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch(StreamExecution.scala:404) > at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply$mcV$sp(StreamExecution.scala:250) > at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply(StreamExecution.scala:244) > at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply(StreamExecution.scala:244) > at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:262) > at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:46) > at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1.apply$mcZ$sp(StreamExecution.scala:244) > at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:43) > at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:239) > ... 1 more > Done reading and writing streaming data > *Expected Output : select query should be successful from beeline on the streaming table.* -- This message was sent by Atlassian JIRA (v6.4.14#64029) |
Free forum by Nabble | Edit this page |