[ https://issues.apache.org/jira/browse/CARBONDATA-1782?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Chetan Bhat updated CARBONDATA-1782: ------------------------------------ Description: Steps : Thrift server is started using the command - bin/spark-submit --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --class org.apache.carbondata.spark.thriftserver.CarbonThriftServer /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar "hdfs://hacluster/user/sparkhive/warehouse" Spark shell is launched using the command - bin/spark-shell --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --jars /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar From Spark shell the streaming table is created and data is loaded to the streaming table. import java.io.{File, PrintWriter} import java.net.ServerSocket import org.apache.spark.sql.{CarbonEnv, SparkSession} import org.apache.spark.sql.hive.CarbonRelation import org.apache.spark.sql.streaming.{ProcessingTime, StreamingQuery} import org.apache.carbondata.core.constants.CarbonCommonConstants import org.apache.carbondata.core.util.CarbonProperties import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") import org.apache.spark.sql.CarbonSession._ val carbonSession = SparkSession. builder(). appName("StreamExample"). getOrCreateCarbonSession("hdfs://hacluster/user/hive/warehouse/carbon.store") carbonSession.sparkContext.setLogLevel("INFO") def sql(sql: String) = carbonSession.sql(sql) def writeSocket(serverSocket: ServerSocket): Thread = { val thread = new Thread() { override def run(): Unit = { // wait for client to connection request and accept val clientSocket = serverSocket.accept() val socketWriter = new PrintWriter(clientSocket.getOutputStream()) var index = 0 for (_ <- 1 to 1000) { // write 5 records per iteration for (_ <- 0 to 100) { index = index + 1 socketWriter.println(index.toString + ",name_" + index + ",city_" + index + "," + (index * 10000.00).toString + ",school_" + index + ":school_" + index + index + "$" + index) } socketWriter.flush() Thread.sleep(2000) } socketWriter.close() System.out.println("Socket closed") } } thread.start() thread } def startStreaming(spark: SparkSession, tablePath: CarbonTablePath, tableName: String, port: Int): Thread = { val thread = new Thread() { override def run(): Unit = { var qry: StreamingQuery = null try { val readSocketDF = spark.readStream .format("socket") .option("host", "10.18.98.34") .option("port", port) .load() qry = readSocketDF.writeStream .format("carbondata") .trigger(ProcessingTime("5 seconds")) .option("checkpointLocation", tablePath.getStreamingCheckpointDir) .option("tablePath", tablePath.getPath).option("tableName", tableName) .start() qry.awaitTermination() } catch { case ex: Throwable => ex.printStackTrace() println("Done reading and writing streaming data") } finally { qry.stop() } } } thread.start() thread } val streamTableName = "uniqdata" sql(s"CREATE TABLE uniqdata (CUST_ID int,CUST_NAME String,ACTIVE_EMUI_VERSION string, DOB timestamp, DOJ timestamp, BIGINT_COLUMN1 bigint,BIGINT_COLUMN2 bigint,DECIMAL_COLUMN1 decimal(30,10), DECIMAL_COLUMN2 decimal(36,36),Double_COLUMN1 double, Double_COLUMN2 double,INTEGER_COLUMN1 int) STORED BY 'org.apache.carbondata.format' TBLPROPERTIES('streaming'='true')") sql(s"LOAD DATA INPATH 'hdfs://hacluster/chetan/2000_UniqData.csv' into table uniqdata OPTIONS( 'BAD_RECORDS_ACTION'='FORCE','FILEHEADER'='CUST_ID,CUST_NAME,ACTIVE_EMUI_VERSION,DOB,DOJ,BIGINT_COLUMN1,BIGINT_COLUMN2,DECIMAL_COLUMN1,DECIMAL_COLUMN2,Double_COLUMN1,Double_COLUMN2,INTEGER_COLUMN1')") val carbonTable = CarbonEnv.getInstance(carbonSession).carbonMetastore. lookupRelation(Some("default"), streamTableName)(carbonSession).asInstanceOf[CarbonRelation].carbonTable val tablePath = CarbonStorePath.getCarbonTablePath(carbonTable.getAbsoluteTableIdentifier) val port = 8006 val serverSocket = new ServerSocket(port) val socketThread = writeSocket(serverSocket) val streamingThread = startStreaming(carbonSession, tablePath, streamTableName, port) From Beeline user executes the query select regexp_extract(CUST_NAME,'a',1)from uniqdata where regexp_extract(CUST_NAME,'a',1) IS NULL or regexp_extract(DOB,'b',2) is NULL; *Issue : Select regexp_extract from table with where clause having is null throws indexoutofbounds exception* 0: jdbc:hive2://10.18.98.34:23040> select regexp_extract(CUST_NAME,'a',1)from uniqdata where regexp_extract(CUST_NAME,'a',1) IS NULL or regexp_extract(DOB,'b',2) is NULL; Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 198.0 failed 4 times, most recent failure: Lost task 1.3 in stage 198.0 (TID 1634, BLR1000014269, executor 8): java.lang.IndexOutOfBoundsException: No group 1 at java.util.regex.Matcher.group(Matcher.java:538) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Driver stacktrace: (state=,code=0) Expected : Select regexp_extract from table with where clause having is null should be successful. was: Steps : Thrift server is started using the command - bin/spark-submit --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --class org.apache.carbondata.spark.thriftserver.CarbonThriftServer /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar "hdfs://hacluster/user/sparkhive/warehouse" Spark shell is launched using the command - bin/spark-shell --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --jars /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar From Spark shell the streaming table is created and data is loaded to the streaming table. import java.io.{File, PrintWriter} import java.net.ServerSocket import org.apache.spark.sql.{CarbonEnv, SparkSession} import org.apache.spark.sql.hive.CarbonRelation import org.apache.spark.sql.streaming.{ProcessingTime, StreamingQuery} import org.apache.carbondata.core.constants.CarbonCommonConstants import org.apache.carbondata.core.util.CarbonProperties import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") import org.apache.spark.sql.CarbonSession._ val carbonSession = SparkSession. builder(). appName("StreamExample"). getOrCreateCarbonSession("hdfs://hacluster/user/hive/warehouse/carbon.store") carbonSession.sparkContext.setLogLevel("INFO") def sql(sql: String) = carbonSession.sql(sql) def writeSocket(serverSocket: ServerSocket): Thread = { val thread = new Thread() { override def run(): Unit = { // wait for client to connection request and accept val clientSocket = serverSocket.accept() val socketWriter = new PrintWriter(clientSocket.getOutputStream()) var index = 0 for (_ <- 1 to 1000) { // write 5 records per iteration for (_ <- 0 to 100) { index = index + 1 socketWriter.println(index.toString + ",name_" + index + ",city_" + index + "," + (index * 10000.00).toString + ",school_" + index + ":school_" + index + index + "$" + index) } socketWriter.flush() Thread.sleep(2000) } socketWriter.close() System.out.println("Socket closed") } } thread.start() thread } def startStreaming(spark: SparkSession, tablePath: CarbonTablePath, tableName: String, port: Int): Thread = { val thread = new Thread() { override def run(): Unit = { var qry: StreamingQuery = null try { val readSocketDF = spark.readStream .format("socket") .option("host", "10.18.98.34") .option("port", port) .load() qry = readSocketDF.writeStream .format("carbondata") .trigger(ProcessingTime("5 seconds")) .option("checkpointLocation", tablePath.getStreamingCheckpointDir) .option("tablePath", tablePath.getPath).option("tableName", tableName) .start() qry.awaitTermination() } catch { case ex: Throwable => ex.printStackTrace() println("Done reading and writing streaming data") } finally { qry.stop() } } } thread.start() thread } val streamTableName = "uniqdata" sql(s"CREATE TABLE uniqdata (CUST_ID int,CUST_NAME String,ACTIVE_EMUI_VERSION string, DOB timestamp, DOJ timestamp, BIGINT_COLUMN1 bigint,BIGINT_COLUMN2 bigint,DECIMAL_COLUMN1 decimal(30,10), DECIMAL_COLUMN2 decimal(36,36),Double_COLUMN1 double, Double_COLUMN2 double,INTEGER_COLUMN1 int) STORED BY 'org.apache.carbondata.format' TBLPROPERTIES('streaming'='true')") sql(s"LOAD DATA INPATH 'hdfs://hacluster/chetan/2000_UniqData.csv' into table uniqdata OPTIONS( 'BAD_RECORDS_ACTION'='FORCE','FILEHEADER'='CUST_ID,CUST_NAME,ACTIVE_EMUI_VERSION,DOB,DOJ,BIGINT_COLUMN1,BIGINT_COLUMN2,DECIMAL_COLUMN1,DECIMAL_COLUMN2,Double_COLUMN1,Double_COLUMN2,INTEGER_COLUMN1')") val carbonTable = CarbonEnv.getInstance(carbonSession).carbonMetastore. lookupRelation(Some("default"), streamTableName)(carbonSession).asInstanceOf[CarbonRelation].carbonTable val tablePath = CarbonStorePath.getCarbonTablePath(carbonTable.getAbsoluteTableIdentifier) val port = 8006 val serverSocket = new ServerSocket(port) val socketThread = writeSocket(serverSocket) val streamingThread = startStreaming(carbonSession, tablePath, streamTableName, port) From Beeline user executes the query select regexp_extract(CUST_NAME,'a',1)from uniqdata where regexp_extract(CUST_NAME,'a',1) IS NULL or regexp_extract(DOB,'b',2) is NULL; Issue : Select regexp_extract from table with where clause having is null throws indexoutofbounds exception 0: jdbc:hive2://10.18.98.34:23040> select regexp_extract(CUST_NAME,'a',1)from uniqdata where regexp_extract(CUST_NAME,'a',1) IS NULL or regexp_extract(DOB,'b',2) is NULL; Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 198.0 failed 4 times, most recent failure: Lost task 1.3 in stage 198.0 (TID 1634, BLR1000014269, executor 8): java.lang.IndexOutOfBoundsException: No group 1 at java.util.regex.Matcher.group(Matcher.java:538) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Driver stacktrace: (state=,code=0) Expected : Select regexp_extract from table with where clause having is null should be successful. > (Carbon1.3.0 - Streaming) Select regexp_extract from table with where clause having is null throws indexoutofbounds exception > ----------------------------------------------------------------------------------------------------------------------------- > > Key: CARBONDATA-1782 > URL: https://issues.apache.org/jira/browse/CARBONDATA-1782 > Project: CarbonData > Issue Type: Bug > Components: data-query > Affects Versions: 1.3.0 > Environment: 3 node ant cluster > Reporter: Chetan Bhat > Labels: DFX > > Steps : > Thrift server is started using the command - bin/spark-submit --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --class org.apache.carbondata.spark.thriftserver.CarbonThriftServer /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar "hdfs://hacluster/user/sparkhive/warehouse" > Spark shell is launched using the command - bin/spark-shell --master yarn-client --executor-memory 10G --executor-cores 5 --driver-memory 5G --num-executors 3 --jars /srv/spark2.2Bigdata/install/spark/sparkJdbc/carbonlib/carbondata_2.11-1.3.0-SNAPSHOT-shade-hadoop2.7.2.jar > From Spark shell the streaming table is created and data is loaded to the streaming table. > import java.io.{File, PrintWriter} > import java.net.ServerSocket > import org.apache.spark.sql.{CarbonEnv, SparkSession} > import org.apache.spark.sql.hive.CarbonRelation > import org.apache.spark.sql.streaming.{ProcessingTime, StreamingQuery} > import org.apache.carbondata.core.constants.CarbonCommonConstants > import org.apache.carbondata.core.util.CarbonProperties > import org.apache.carbondata.core.util.path.{CarbonStorePath, CarbonTablePath} > CarbonProperties.getInstance().addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, "yyyy/MM/dd") > import org.apache.spark.sql.CarbonSession._ > val carbonSession = SparkSession. > builder(). > appName("StreamExample"). > getOrCreateCarbonSession("hdfs://hacluster/user/hive/warehouse/carbon.store") > > carbonSession.sparkContext.setLogLevel("INFO") > def sql(sql: String) = carbonSession.sql(sql) > def writeSocket(serverSocket: ServerSocket): Thread = { > val thread = new Thread() { > override def run(): Unit = { > // wait for client to connection request and accept > val clientSocket = serverSocket.accept() > val socketWriter = new PrintWriter(clientSocket.getOutputStream()) > var index = 0 > for (_ <- 1 to 1000) { > // write 5 records per iteration > for (_ <- 0 to 100) { > index = index + 1 > socketWriter.println(index.toString + ",name_" + index > + ",city_" + index + "," + (index * 10000.00).toString + > ",school_" + index + ":school_" + index + index + "$" + index) > } > socketWriter.flush() > Thread.sleep(2000) > } > socketWriter.close() > System.out.println("Socket closed") > } > } > thread.start() > thread > } > > def startStreaming(spark: SparkSession, tablePath: CarbonTablePath, tableName: String, port: Int): Thread = { > val thread = new Thread() { > override def run(): Unit = { > var qry: StreamingQuery = null > try { > val readSocketDF = spark.readStream > .format("socket") > .option("host", "10.18.98.34") > .option("port", port) > .load() > qry = readSocketDF.writeStream > .format("carbondata") > .trigger(ProcessingTime("5 seconds")) > .option("checkpointLocation", tablePath.getStreamingCheckpointDir) > .option("tablePath", tablePath.getPath).option("tableName", tableName) > .start() > qry.awaitTermination() > } catch { > case ex: Throwable => > ex.printStackTrace() > println("Done reading and writing streaming data") > } finally { > qry.stop() > } > } > } > thread.start() > thread > } > val streamTableName = "uniqdata" > sql(s"CREATE TABLE uniqdata (CUST_ID int,CUST_NAME String,ACTIVE_EMUI_VERSION string, DOB timestamp, DOJ timestamp, BIGINT_COLUMN1 bigint,BIGINT_COLUMN2 bigint,DECIMAL_COLUMN1 decimal(30,10), DECIMAL_COLUMN2 decimal(36,36),Double_COLUMN1 double, Double_COLUMN2 double,INTEGER_COLUMN1 int) STORED BY 'org.apache.carbondata.format' TBLPROPERTIES('streaming'='true')") > sql(s"LOAD DATA INPATH 'hdfs://hacluster/chetan/2000_UniqData.csv' into table uniqdata OPTIONS( 'BAD_RECORDS_ACTION'='FORCE','FILEHEADER'='CUST_ID,CUST_NAME,ACTIVE_EMUI_VERSION,DOB,DOJ,BIGINT_COLUMN1,BIGINT_COLUMN2,DECIMAL_COLUMN1,DECIMAL_COLUMN2,Double_COLUMN1,Double_COLUMN2,INTEGER_COLUMN1')") > val carbonTable = CarbonEnv.getInstance(carbonSession).carbonMetastore. > lookupRelation(Some("default"), streamTableName)(carbonSession).asInstanceOf[CarbonRelation].carbonTable > val tablePath = CarbonStorePath.getCarbonTablePath(carbonTable.getAbsoluteTableIdentifier) > val port = 8006 > val serverSocket = new ServerSocket(port) > val socketThread = writeSocket(serverSocket) > val streamingThread = startStreaming(carbonSession, tablePath, streamTableName, port) > From Beeline user executes the query > select regexp_extract(CUST_NAME,'a',1)from uniqdata where regexp_extract(CUST_NAME,'a',1) IS NULL or regexp_extract(DOB,'b',2) is NULL; > *Issue : Select regexp_extract from table with where clause having is null throws indexoutofbounds exception* > 0: jdbc:hive2://10.18.98.34:23040> select regexp_extract(CUST_NAME,'a',1)from uniqdata where regexp_extract(CUST_NAME,'a',1) IS NULL or regexp_extract(DOB,'b',2) is NULL; > Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 198.0 failed 4 times, most recent failure: Lost task 1.3 in stage 198.0 (TID 1634, BLR1000014269, executor 8): java.lang.IndexOutOfBoundsException: No group 1 > at java.util.regex.Matcher.group(Matcher.java:538) > at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) > at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225) > at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) > at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) > at org.apache.spark.scheduler.Task.run(Task.scala:99) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Driver stacktrace: (state=,code=0) > Expected : Select regexp_extract from table with where clause having is null should be successful. -- This message was sent by Atlassian JIRA (v6.4.14#64029) |
Free forum by Nabble | Edit this page |