[ https://issues.apache.org/jira/browse/CARBONDATA-1794?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Ramakrishna S updated CARBONDATA-1794: -------------------------------------- Description: Steps : 1. Create a streaming table and do a batch load 2. Set up the Streaming , so that it does streaming in chunk of 1000 records 20 times was: Steps : 1. Create a streaming table and do a batch load 2. Set up the Streaming , so that it does streaming in chunk of 1000 records 20 times 3. Do another batch load on the table 4. Do one more time streaming +-------------+------------+--------------------------+--------------------------+--------------+------------+--+ | Segment Id | Status | Load Start Time | Load End Time | File Format | Merged To | +-------------+------------+--------------------------+--------------------------+--------------+------------+--+ | 2 | Success | 2017-11-21 21:42:36.77 | 2017-11-21 21:42:40.396 | COLUMNAR_V3 | NA | | 1 | Streaming | 2017-11-21 21:40:46.2 | NULL | ROW_V1 | NA | | 0 | Success | 2017-11-21 21:40:39.782 | 2017-11-21 21:40:43.168 | COLUMNAR_V3 | NA | +-------------+------------+--------------------------+--------------------------+--------------+------------+--+ *+Expected:+* Data should be loaded *+Actual+* : Data load fiails 1. One addition offset file is created(marked in bold) -rw-r--r-- 2 root users 62 2017-11-21 21:40 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/0 -rw-r--r-- 2 root users 63 2017-11-21 21:40 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/1 -rw-r--r-- 2 root users 63 2017-11-21 21:42 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/10 -rw-r--r-- 2 root users 63 2017-11-21 21:40 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/2 -rw-r--r-- 2 root users 63 2017-11-21 21:41 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/3 -rw-r--r-- 2 root users 64 2017-11-21 21:41 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/4 -rw-r--r-- 2 root users 64 2017-11-21 21:41 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/5 -rw-r--r-- 2 root users 64 2017-11-21 21:41 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/6 -rw-r--r-- 2 root users 64 2017-11-21 21:41 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/7 -rw-r--r-- 2 root users 64 2017-11-21 21:41 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/8 *-rw-r--r-- 2 root users 63 2017-11-21 21:42 /user/hive/warehouse/Ram/default/stream_table5/.streaming/checkpoint/offsets/9* 2. Following error thrown: === Streaming Query === Identifier: [id = 3a5334bc-d471-4676-b6ce-f21105d491d1, runId = b2be9f97-8141-46be-89db-9a0f98d13369] Current Offsets: {org.apache.spark.sql.execution.streaming.TextSocketSource@14c45193: 1000} Current State: ACTIVE Thread State: RUNNABLE Logical Plan: org.apache.spark.sql.execution.streaming.TextSocketSource@14c45193 at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:284) at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:177) Caused by: java.lang.RuntimeException: Offsets committed out of order: 20019 followed by 1000 at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.execution.streaming.TextSocketSource.commit(socket.scala:151) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:421) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2$$anonfun$apply$mcV$sp$4.apply(StreamExecution.scala:420) at scala.collection.Iterator$class.foreach(Iterator.scala:893) at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) at org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply$mcV$sp(StreamExecution.scala:420) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch$2.apply(StreamExecution.scala:404) at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:262) at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:46) at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$constructNextBatch(StreamExecution.scala:404) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply$mcV$sp(StreamExecution.scala:250) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply(StreamExecution.scala:244) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$1.apply(StreamExecution.scala:244) at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:262) at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:46) at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1.apply$mcZ$sp(StreamExecution.scala:244) at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:43) at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:239) ... 1 more Done reading and writing streaming data Socket closed > (Carbon1.3.0 - Streaming) Data load in Stream Segment fails if batch load is performed in between the streaming > --------------------------------------------------------------------------------------------------------------- > > Key: CARBONDATA-1794 > URL: https://issues.apache.org/jira/browse/CARBONDATA-1794 > Project: CarbonData > Issue Type: Bug > Components: data-query > Affects Versions: 1.3.0 > Environment: 3 node ant cluster > Reporter: Ramakrishna S > Labels: DFX > > Steps : > 1. Create a streaming table and do a batch load > 2. Set up the Streaming , so that it does streaming in chunk of 1000 records 20 times -- This message was sent by Atlassian JIRA (v6.4.14#64029) |
Free forum by Nabble | Edit this page |