Login  Register

Re: Logging problem

Posted by Liang Chen on May 26, 2017; 3:51pm
URL: http://apache-carbondata-dev-mailing-list-archive.168.s1.nabble.com/Logging-problem-tp13170p13265.html

Hi Rana

Please let us know if your issue be solved?

Regards
Liang

2017-05-25 20:38 GMT+08:00 Liang Chen <[hidden email]>:

> Hi Rana
>
> Your this query is in Spark-shell ?
> Please try the below script:
>
> import org.apache.log4j.Logger
> import org.apache.log4j.Level
> Logger.getLogger("org").setLevel(Level.OFF)
> Logger.getLogger("akka").setLevel(Level.OFF)
>
>
> Regards
> Liang
>
> Rana Faisal Munir wrote
> > Hi,
> >
> > Today, I was running a filter query ("SELECT  *  FROM widetable WHERE
> > col_long_0 = 0") on a wide table with 1187 columns and Spark started
> > printing the below output. It spills alot of log which I want to turn
> > off. There is any option to turn it off.  I have tried both option
> > (ERROR,INFO) in log4j.properties file. It did not work for me.
> >
> > Thank you
> >
> > Regards
> > Faisal
> >
> >
> > 17/05/24 12:39:41 INFO CarbonLateDecodeRule: main Starting to optimize
> > plan
> > 17/05/24 12:39:41 INFO CarbonLateDecodeRule: main Skip CarbonOptimizer
> > 17/05/24 12:39:42 INFO deprecation: mapred.job.id is deprecated.
> > Instead, use mapreduce.job.id
> > 17/05/24 12:39:42 INFO deprecation: mapred.tip.id is deprecated.
> > Instead, use mapreduce.task.id
> > 17/05/24 12:39:42 INFO deprecation: mapred.task.id is deprecated.
> > Instead, use mapreduce.task.attempt.id
> > 17/05/24 12:39:42 INFO deprecation: mapred.task.is.map is deprecated.
> > Instead, use mapreduce.task.ismap
> > 17/05/24 12:39:42 INFO deprecation: mapred.task.partition is deprecated.
> > Instead, use mapreduce.task.partition
> > 17/05/24 12:39:42 INFO FileOutputCommitter: File Output Committer
> > Algorithm version is 1
> > 17/05/24 12:39:42 INFO SQLHadoopMapReduceCommitProtocol: Using output
> > committer class org.apache.hadoop.mapreduce.
> lib.output.FileOutputCommitter
> > 17/05/24 12:39:44 ERROR CodeGenerator: failed to compile:
> > org.codehaus.janino.JaninoRuntimeException: Code of method
> > "processNext()V" of class
> > "org.apache.spark.sql.catalyst.expressions.GeneratedClass$
> GeneratedIterator"
> > grows beyond 64 KB
> > /* 001 */ public Object generate(Object[] references) {
> > /* 002 */   return new GeneratedIterator(references);
> > /* 003 */ }
> > /* 004 */
> > /* 005 */ final class GeneratedIterator extends
> > org.apache.spark.sql.execution.BufferedRowIterator {
> > /* 006 */   private Object[] references;
> > /* 007 */   private scala.collection.Iterator[] inputs;
> > /* 008 */   private scala.collection.Iterator scan_input;
> > /* 009 */   private org.apache.spark.sql.execution.metric.SQLMetric
> > scan_numOutputRows;
> > /* 010 */   private org.apache.spark.sql.execution.metric.SQLMetric
> > scan_scanTime;
> > /* 011 */   private long scan_scanTime1;
> > /* 012 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnarBatch scan_batch;
> > /* 013 */   private int scan_batchIdx;
> > /* 014 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance0;
> > /* 015 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance1;
> > /* 016 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance2;
> > /* 017 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance3;
> > /* 018 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance4;
> > /* 019 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance5;
> > /* 020 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance6;
> > /* 021 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance7;
> > /* 022 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance8;
> > /* 023 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance9;
> > /* 024 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance10;
> > /* 025 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance11;
> > /* 026 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance12;
> > /* 027 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance13;
> > /* 028 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance14;
> > /* 029 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance15;
> > /* 030 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance16;
> > /* 031 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance17;
> > /* 032 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance18;
> > /* 033 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance19;
> > /* 034 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance20;
> > /* 035 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance21;
> > /* 036 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance22;
> > /* 037 */   private
> > org.apache.spark.sql.execution.vectorized.ColumnVector
> scan_colInstance23;
>
>
>
>
>
> --
> View this message in context: http://apache-carbondata-dev-
> mailing-list-archive.1130556.n5.nabble.com/Logging-problem-
> tp13170p13219.html
> Sent from the Apache CarbonData Dev Mailing List archive mailing list
> archive at Nabble.com.
>



--
Regards
Liang