Hello! 0、The failure When i insert into carbon table,i encounter failure。The failure is as follow: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): ExecutorLostFailure (executor 1 exited caused by one of the running tasks) Reason: Slave lost+details Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): ExecutorLostFailure (executor 1 exited caused by one of the running tasks) Reason: Slave lost Driver stacktrace: the stage: Step: 1、start spark-shell ./bin/spark-shell \ --master yarn-client \ --num-executors 5 \ (I tried to set this parameter range from 10 to 20,but the second job has only 5 tasks) --executor-cores 5 \ --executor-memory 20G \ --driver-memory 8G \ --queue root.default \ --jars /xxx.jar //spark-default.conf spark.default.parallelism=320 import org.apache.spark.sql.CarbonContext val cc = new CarbonContext(sc, "hdfs://xxxx/carbonData/CarbonStore") 2、create table cc.sql("CREATE TABLE IF NOT EXISTS xxxx_table (dt String,pt String,lst String,plat String,sty String,is_pay String,is_vip String,is_mpack String,scene String,status String,nw String,isc String,area String,spttag String,province String,isp String,city String,tv String,hwm String,pip String,fo String,sh String,mid String,user_id String,play_pv Int,spt_cnt Int,prg_spt_cnt Int) row format delimited fields terminated by '|' STORED BY 'carbondata' TBLPROPERTIES ('DICTIONARY_EXCLUDE'='pip,sh,mid,fo,user_id','DICTIONARY_INCLUDE'='dt,pt,lst,plat,sty,is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp,city,tv,hwm','NO_INVERTED_INDEX'='lst,plat,hwm,pip,sh,mid','BUCKETNUMBER'='10','BUCKETCOLUMNS'='fo')") //notes,set "fo" column BUCKETCOLUMNS is to join another table //the column distinct values are as follows: 3、insert into table(xxxx_table_tmp is a hive extenal orc table,has 20 0000 0000 records) cc.sql("insert into xxxx_table select dt,pt,lst,plat,sty,is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp,city,tv,hwm,pip,fo,sh,mid,user_id ,play_pv,spt_cnt,prg_spt_cnt from xxxx_table_tmp where dt='2017-01-01'") 4、spark split sql into two jobs,the first finished succeeded, but the second failed: 5、The second job stage: Question: 1、Why the second job has only five jobs,but the first job has 994 jobs ?( note:My hadoop cluster has 5 datanode) I guess it caused the failure 2、In the sources,i find DataLoadPartitionCoalescer.class,is it means that "one datanode has only one partition ,and then the task is only one on the datanode"? 3、In the ExampleUtils class,"carbon.table.split.partition.enable" is set as follow,but i can not find "carbon.table.split.partition.enable" in other parts of the project。 I set "carbon.table.split.partition.enable" to true, but the second job has only five jobs.How to use this property? ExampleUtils : // whether use table split partition // true -> use table split partition, support multiple partition loading // false -> use node split partition, support data load by host partition CarbonProperties.getInstance().addProperty("carbon.table.split.partition.enable", "false") 4、Insert into carbon table takes 3 hours ,but eventually failed 。How can i speed it. 5、in the spark-shell ,I tried to set this parameter range from 10 to 20,but the second job has only 5 tasks the other parameter executor-memory = 20G is enough? |
Administrator
|
Hi
Please provide all columns' cardinality info(distinct value). Regards Liang
|
|
In reply to this post by Liang Chen
| col_name | data_type | 基数数量 |
| dt | string | date | | pt | string | 3 | | lst | string | 1 | | plat | string | 1 | | sty | string | 2 | | is_pay | string | 2 | | is_vip | string | 2 | | is_mpack | string | 2 | | scene | string | 3 | | status | string | 4 | | nw | string | 5 | | isc | string | 5 | | area | string | 9 | | spttag | string | 18 | | province | string | 484 | | isp | string | 706 | | city | string | 1127 | | tv | string | 1577 | | hwm | string | 10000 | | pip | string | 1000000 | | fo | string | 6307095 | | sh | string | 10000000 | | mid | string | 80000000 | | user_id | string | 80000000 | | play_pv | bigint | | | spt_cnt | bigint | | | prg_spt_cnt | bigint | | At 2017-03-25 18:52:07, "Liang Chen" <[hidden email]> wrote: >Hi > >Please provide all columns' cardinality info(distinct value). > >Regards >Liang > > >[hidden email] wrote >> Hello! >> >> 0、The failure >> When i insert into carbon table,i encounter failure。The failure is as >> follow: >> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most >> recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): >> ExecutorLostFailure (executor 1 exited caused by one of the running tasks) >> Reason: Slave lost+details >> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most >> recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): >> ExecutorLostFailure (executor 1 exited caused by one of the running tasks) >> Reason: Slave lost >> Driver stacktrace: >> the stage: >> >> Step: >> 1、start spark-shell >> ./bin/spark-shell \ >> --master yarn-client \ >> --num-executors 5 \ (I tried to set this parameter range from 10 to >> 20,but the second job has only 5 tasks) >> --executor-cores 5 \ >> --executor-memory 20G \ >> --driver-memory 8G \ >> --queue root.default \ >> --jars /xxx.jar >> >> //spark-default.conf spark.default.parallelism=320 >> >> import org.apache.spark.sql.CarbonContext >> val cc = new CarbonContext(sc, "hdfs://xxxx/carbonData/CarbonStore") >> >> 2、create table >> cc.sql("CREATE TABLE IF NOT EXISTS xxxx_table (dt String,pt String,lst >> String,plat String,sty String,is_pay String,is_vip String,is_mpack >> String,scene String,status String,nw String,isc String,area String,spttag >> String,province String,isp String,city String,tv String,hwm String,pip >> String,fo String,sh String,mid String,user_id String,play_pv Int,spt_cnt >> Int,prg_spt_cnt Int) row format delimited fields terminated by '|' STORED >> BY 'carbondata' TBLPROPERTIES >> ('DICTIONARY_EXCLUDE'='pip,sh,mid,fo,user_id','DICTIONARY_INCLUDE'='dt,pt,lst,plat,sty,is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp,city,tv,hwm','NO_INVERTED_INDEX'='lst,plat,hwm,pip,sh,mid','BUCKETNUMBER'='10','BUCKETCOLUMNS'='fo')") >> >> //notes,set "fo" column BUCKETCOLUMNS is to join another table >> //the column distinct values are as follows: >> >> >> 3、insert into table(xxxx_table_tmp is a hive extenal orc table,has 20 >> 0000 0000 records) >> cc.sql("insert into xxxx_table select >> dt,pt,lst,plat,sty,is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp,city,tv,hwm,pip,fo,sh,mid,user_id >> ,play_pv,spt_cnt,prg_spt_cnt from xxxx_table_tmp where dt='2017-01-01'") >> >> 4、spark split sql into two jobs,the first finished succeeded, but the >> second failed: >> >> >> 5、The second job stage: >> >> >> >> Question: >> 1、Why the second job has only five jobs,but the first job has 994 jobs ?( >> note:My hadoop cluster has 5 datanode) >> I guess it caused the failure >> 2、In the sources,i find DataLoadPartitionCoalescer.class,is it means that >> "one datanode has only one partition ,and then the task is only one on the >> datanode"? >> 3、In the ExampleUtils class,"carbon.table.split.partition.enable" is set >> as follow,but i can not find "carbon.table.split.partition.enable" in >> other parts of the project。 >> I set "carbon.table.split.partition.enable" to true, but the second >> job has only five jobs.How to use this property? >> ExampleUtils : >> // whether use table split partition >> // true -> use table split partition, support multiple partition >> loading >> // false -> use node split partition, support data load by host >> partition >> >> CarbonProperties.getInstance().addProperty("carbon.table.split.partition.enable", >> "false") >> 4、Insert into carbon table takes 3 hours ,but eventually failed 。How can i >> speed it. >> 5、in the spark-shell ,I tried to set this parameter range from 10 to >> 20,but the second job has only 5 tasks >> the other parameter executor-memory = 20G is enough? >> >> I need your help!Thank you very much! > >> wwyxg@ > >> >> > >> wwyxg@ > > > > > >-- >View this message in context: http://apache-carbondata-mailing-list-archive.1130556.n5.nabble.com/insert-into-carbon-table-failed-tp9609p9610.html >Sent from the Apache CarbonData Mailing List archive mailing list archive at Nabble.com. |
In reply to this post by a
Hi,
Carbodata launches one job per each node to sort the data at node level and avoid shuffling. Internally it uses threads to use parallel load. Please use carbon.number.of.cores.while.loading property in carbon.properties file and set the number of cores it should use per machine while loading. Carbondata sorts the data at each node level to maintain the Btree for each node per segment. It improves the query performance by filtering faster if we have Btree at node level instead of each block level. 1.Which version of Carbondata are you using? 2.There are memory issues in Carbondata-1.0 version and are fixed current master. 3.And you can improve the performance by enabling enable.unsafe.sort=true in carbon.properties file. But it is not supported if bucketing of columns are enabled. We are planning to support unsafe sort load for bucketing also in next version. Please send the executor log to know about the error you are facing. Regards, Ravindra On 25 March 2017 at 16:18, [hidden email] <[hidden email]> wrote: > Hello! > > *0、The failure* > When i insert into carbon table,i encounter failure。The failure is as > follow: > Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most > recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): > ExecutorLostFailure (executor 1 exited caused by one of the running tasks) > Reason: Slave lost+details > > Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): ExecutorLostFailure (executor 1 exited caused by one of the running tasks) Reason: Slave lost > Driver stacktrace: > > the stage: > > *Step:* > *1、start spark-shell* > ./bin/spark-shell \ > --master yarn-client \ > --num-executors 5 \ (I tried to set this parameter range from 10 to > 20,but the second job has only 5 tasks) > --executor-cores 5 \ > --executor-memory 20G \ > --driver-memory 8G \ > --queue root.default \ > --jars /xxx.jar > > //spark-default.conf spark.default.parallelism=320 > > import org.apache.spark.sql.CarbonContext > val cc = new CarbonContext(sc, "hdfs://xxxx/carbonData/CarbonStore") > > *2、create table* > cc.sql("CREATE TABLE IF NOT EXISTS xxxx_table (dt String,pt String,lst > String,plat String,sty String,is_pay String,is_vip String,is_mpack > String,scene String,status String,nw String,isc String,area String,spttag > String,province String,isp String,city String,tv String,hwm String,pip > String,fo String,sh String,mid String,user_id String,play_pv Int,spt_cnt > Int,prg_spt_cnt Int) row format delimited fields terminated by '|' STORED > BY 'carbondata' TBLPROPERTIES ('DICTIONARY_EXCLUDE'='pip,sh, > mid,fo,user_id','DICTIONARY_INCLUDE'='dt,pt,lst,plat,sty, > is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag, > province,isp,city,tv,hwm','NO_INVERTED_INDEX'='lst,plat,hwm, > pip,sh,mid','BUCKETNUMBER'='10','BUCKETCOLUMNS'='fo')") > > //notes,set "fo" column BUCKETCOLUMNS is to join another table > //the column distinct values are as follows: > > > *3、insert into table*(xxxx_table_tmp is a hive extenal orc table,has 20 > 0000 0000 records) > cc.sql("insert into xxxx_table select dt,pt,lst,plat,sty,is_pay,is_ > vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp, > city,tv,hwm,pip,fo,sh,mid,user_id ,play_pv,spt_cnt,prg_spt_cnt from > xxxx_table_tmp where dt='2017-01-01'") > > *4、spark split sql into two jobs,the first finished succeeded, but the > second failed:* > > > *5、The second job stage:* > > > > *Question:* > 1、Why the second job has only five jobs,but the first job has 994 jobs ?( > note:My hadoop cluster has 5 datanode) > I guess it caused the failure > 2、In the sources,i find DataLoadPartitionCoalescer.class,is it means that > "one datanode has only one partition ,and then the task is only one on the > datanode"? > 3、In the ExampleUtils class,"carbon.table.split.partition.enable" is set > as follow,but i can not find "carbon.table.split.partition.enable" in > other parts of the project。 > I set "carbon.table.split.partition.enable" to true, but the second > job has only five jobs.How to use this property? > ExampleUtils : > // whether use table split partition > // true -> use table split partition, support multiple partition > loading > // false -> use node split partition, support data load by host > partition > CarbonProperties.getInstance().addProperty("carbon.table.split.partition.enable", > "false") > 4、Insert into carbon table takes 3 hours ,but eventually failed 。How can > i speed it. > 5、in the spark-shell ,I tried to set this parameter range from 10 to > 20,but the second job has only 5 tasks > the other parameter executor-memory = 20G is enough? > > I need your help!Thank you very much! > > [hidden email] > > ------------------------------ > [hidden email] > -- Thanks & Regards, Ravi |
Thank you Ravindra!
Version: My carbondata version is 1.0,spark version is 1.6.3,hadoop version is 2.7.1,hive version is 1.1.0 one of the containers log: 17/03/25 22:07:09 ERROR executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM 17/03/25 22:07:09 INFO storage.DiskBlockManager: Shutdown hook called 17/03/25 22:07:09 INFO util.ShutdownHookManager: Shutdown hook called 17/03/25 22:07:09 INFO util.ShutdownHookManager: Deleting directory /data1/hadoop/hd_space/tmp/nm-local-dir/usercache/storm/appcache/application_1490340325187_0042/spark-84b305f9-af7b-4f58-a809-700345a84109 17/03/25 22:07:10 ERROR impl.ParallelReadMergeSorterImpl: pool-23-thread-2 java.io.IOException: Error reading file: hdfs://xxxx_table_tmp/dt=2017-01-01/pt=ios/000006_0 at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next(RecordReaderImpl.java:1046) at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger$OriginalReaderPair.next(OrcRawRecordMerger.java:263) at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger.next(OrcRawRecordMerger.java:547) at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next(OrcInputFormat.java:1234) at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next(OrcInputFormat.java:1218) at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$NullKeyRecordReader.next(OrcInputFormat.java:1150) at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$NullKeyRecordReader.next(OrcInputFormat.java:1136) at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:249) at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:211) at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at org.apache.carbondata.spark.rdd.NewRddIterator.hasNext(NewCarbonDataLoadRDD.scala:412) at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.internalHasNext(InputProcessorStepImpl.java:163) at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.getBatch(InputProcessorStepImpl.java:221) at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.next(InputProcessorStepImpl.java:183) at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.next(InputProcessorStepImpl.java:117) at org.apache.carbondata.processing.newflow.steps.DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl.java:80) at org.apache.carbondata.processing.newflow.steps.DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl.java:73) at org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl$SortIteratorThread.call(ParallelReadMergeSorterImpl.java:196) at org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl$SortIteratorThread.call(ParallelReadMergeSorterImpl.java:177) at java.util.concurrent.FutureTask.run(FutureTask.java:262) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Caused by: java.io.IOException: Filesystem closed at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:808) at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy(DFSInputStream.java:868) at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:934) at java.io.DataInputStream.readFully(DataInputStream.java:195) at org.apache.hadoop.hive.ql.io.orc.MetadataReader.readStripeFooter(MetadataReader.java:112) at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripeFooter(RecordReaderImpl.java:228) at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.beginReadStripe(RecordReaderImpl.java:805) at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripe(RecordReaderImpl.java:776) at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.advanceStripe(RecordReaderImpl.java:986) at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.advanceToNextRow(RecordReaderImpl.java:1019) at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next(RecordReaderImpl.java:1042) ... 26 more I will try to set enable.unsafe.sort=true and remove BUCKETCOLUMNS property ,and try again. At 2017-03-25 20:55:03, "Ravindra Pesala" <[hidden email]> wrote: >Hi, > >Carbodata launches one job per each node to sort the data at node level and >avoid shuffling. Internally it uses threads to use parallel load. Please >use carbon.number.of.cores.while.loading property in carbon.properties file >and set the number of cores it should use per machine while loading. >Carbondata sorts the data at each node level to maintain the Btree for >each node per segment. It improves the query performance by filtering >faster if we have Btree at node level instead of each block level. > >1.Which version of Carbondata are you using? >2.There are memory issues in Carbondata-1.0 version and are fixed current >master. >3.And you can improve the performance by enabling enable.unsafe.sort=true in >carbon.properties file. But it is not supported if bucketing of columns are >enabled. We are planning to support unsafe sort load for bucketing also in >next version. > >Please send the executor log to know about the error you are facing. > > > > > > >Regards, >Ravindra > >On 25 March 2017 at 16:18, [hidden email] <[hidden email]> wrote: > >> Hello! >> >> *0、The failure* >> When i insert into carbon table,i encounter failure。The failure is as >> follow: >> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most >> recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): >> ExecutorLostFailure (executor 1 exited caused by one of the running tasks) >> Reason: Slave lost+details >> >> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): ExecutorLostFailure (executor 1 exited caused by one of the running tasks) Reason: Slave lost >> Driver stacktrace: >> >> the stage: >> >> *Step:* >> *1、start spark-shell* >> ./bin/spark-shell \ >> --master yarn-client \ >> --num-executors 5 \ (I tried to set this parameter range from 10 to >> 20,but the second job has only 5 tasks) >> --executor-cores 5 \ >> --executor-memory 20G \ >> --driver-memory 8G \ >> --queue root.default \ >> --jars /xxx.jar >> >> //spark-default.conf spark.default.parallelism=320 >> >> import org.apache.spark.sql.CarbonContext >> val cc = new CarbonContext(sc, "hdfs://xxxx/carbonData/CarbonStore") >> >> *2、create table* >> cc.sql("CREATE TABLE IF NOT EXISTS xxxx_table (dt String,pt String,lst >> String,plat String,sty String,is_pay String,is_vip String,is_mpack >> String,scene String,status String,nw String,isc String,area String,spttag >> String,province String,isp String,city String,tv String,hwm String,pip >> String,fo String,sh String,mid String,user_id String,play_pv Int,spt_cnt >> Int,prg_spt_cnt Int) row format delimited fields terminated by '|' STORED >> BY 'carbondata' TBLPROPERTIES ('DICTIONARY_EXCLUDE'='pip,sh, >> mid,fo,user_id','DICTIONARY_INCLUDE'='dt,pt,lst,plat,sty, >> is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag, >> province,isp,city,tv,hwm','NO_INVERTED_INDEX'='lst,plat,hwm, >> pip,sh,mid','BUCKETNUMBER'='10','BUCKETCOLUMNS'='fo')") >> >> //notes,set "fo" column BUCKETCOLUMNS is to join another table >> //the column distinct values are as follows: >> >> >> *3、insert into table*(xxxx_table_tmp is a hive extenal orc table,has 20 >> 0000 0000 records) >> cc.sql("insert into xxxx_table select dt,pt,lst,plat,sty,is_pay,is_ >> vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp, >> city,tv,hwm,pip,fo,sh,mid,user_id ,play_pv,spt_cnt,prg_spt_cnt from >> xxxx_table_tmp where dt='2017-01-01'") >> >> *4、spark split sql into two jobs,the first finished succeeded, but the >> second failed:* >> >> >> *5、The second job stage:* >> >> >> >> *Question:* >> 1、Why the second job has only five jobs,but the first job has 994 jobs ?( >> note:My hadoop cluster has 5 datanode) >> I guess it caused the failure >> 2、In the sources,i find DataLoadPartitionCoalescer.class,is it means that >> "one datanode has only one partition ,and then the task is only one on the >> datanode"? >> 3、In the ExampleUtils class,"carbon.table.split.partition.enable" is set >> as follow,but i can not find "carbon.table.split.partition.enable" in >> other parts of the project。 >> I set "carbon.table.split.partition.enable" to true, but the second >> job has only five jobs.How to use this property? >> ExampleUtils : >> // whether use table split partition >> // true -> use table split partition, support multiple partition >> loading >> // false -> use node split partition, support data load by host >> partition >> CarbonProperties.getInstance().addProperty("carbon.table.split.partition.enable", >> "false") >> 4、Insert into carbon table takes 3 hours ,but eventually failed 。How can >> i speed it. >> 5、in the spark-shell ,I tried to set this parameter range from 10 to >> 20,but the second job has only 5 tasks >> the other parameter executor-memory = 20G is enough? >> >> I need your help!Thank you very much! >> >> [hidden email] >> >> ------------------------------ >> [hidden email] >> > > > >-- >Thanks & Regards, >Ravi |
I have set the parameters as follow: 1、fs.hdfs.impl.disable.cache=true 2、dfs.socket.timeout=1800000 (Exception:aused by: java.io.IOException: Filesystem closed) 3、dfs.datanode.socket.write.timeout=3600000 4、set carbondata property enable.unsafe.sort=true 5、remove BUCKETCOLUMNS property from the create table sql 6、set spark job parameter executor-memory=48G (from 20G to 48G) But it still failed, the error is "executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM。" Then i try to insert 40000 0000 records into carbondata table ,it works success. How can i insert 20 0000 0000 records into carbondata? Should me set executor-memory big enough? Or Should me generate the csv file from the hive table first ,then load the csv file into carbon table? Any body give me same help? Regards fish At 2017-03-26 00:34:18, "a" <[hidden email]> wrote: >Thank you Ravindra! >Version: >My carbondata version is 1.0,spark version is 1.6.3,hadoop version is 2.7.1,hive version is 1.1.0 >one of the containers log: >17/03/25 22:07:09 ERROR executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM >17/03/25 22:07:09 INFO storage.DiskBlockManager: Shutdown hook called >17/03/25 22:07:09 INFO util.ShutdownHookManager: Shutdown hook called >17/03/25 22:07:09 INFO util.ShutdownHookManager: Deleting directory /data1/hadoop/hd_space/tmp/nm-local-dir/usercache/storm/appcache/application_1490340325187_0042/spark-84b305f9-af7b-4f58-a809-700345a84109 >17/03/25 22:07:10 ERROR impl.ParallelReadMergeSorterImpl: pool-23-thread-2 >java.io.IOException: Error reading file: hdfs://xxxx_table_tmp/dt=2017-01-01/pt=ios/000006_0 > at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next(RecordReaderImpl.java:1046) > at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger$OriginalReaderPair.next(OrcRawRecordMerger.java:263) > at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger.next(OrcRawRecordMerger.java:547) > at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next(OrcInputFormat.java:1234) > at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next(OrcInputFormat.java:1218) > at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$NullKeyRecordReader.next(OrcInputFormat.java:1150) > at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$NullKeyRecordReader.next(OrcInputFormat.java:1136) > at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:249) > at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:211) > at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73) > at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > at org.apache.carbondata.spark.rdd.NewRddIterator.hasNext(NewCarbonDataLoadRDD.scala:412) > at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.internalHasNext(InputProcessorStepImpl.java:163) > at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.getBatch(InputProcessorStepImpl.java:221) > at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.next(InputProcessorStepImpl.java:183) > at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.next(InputProcessorStepImpl.java:117) > at org.apache.carbondata.processing.newflow.steps.DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl.java:80) > at org.apache.carbondata.processing.newflow.steps.DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl.java:73) > at org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl$SortIteratorThread.call(ParallelReadMergeSorterImpl.java:196) > at org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl$SortIteratorThread.call(ParallelReadMergeSorterImpl.java:177) > at java.util.concurrent.FutureTask.run(FutureTask.java:262) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) >Caused by: java.io.IOException: Filesystem closed > at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:808) > at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy(DFSInputStream.java:868) > at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:934) > at java.io.DataInputStream.readFully(DataInputStream.java:195) > at org.apache.hadoop.hive.ql.io.orc.MetadataReader.readStripeFooter(MetadataReader.java:112) > at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripeFooter(RecordReaderImpl.java:228) > at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.beginReadStripe(RecordReaderImpl.java:805) > at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripe(RecordReaderImpl.java:776) > at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.advanceStripe(RecordReaderImpl.java:986) > at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.advanceToNextRow(RecordReaderImpl.java:1019) > at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next(RecordReaderImpl.java:1042) > ... 26 more >I will try to set enable.unsafe.sort=true and remove BUCKETCOLUMNS property ,and try again. > > >At 2017-03-25 20:55:03, "Ravindra Pesala" <[hidden email]> wrote: >>Hi, >> >>Carbodata launches one job per each node to sort the data at node level and >>avoid shuffling. Internally it uses threads to use parallel load. Please >>use carbon.number.of.cores.while.loading property in carbon.properties file >>and set the number of cores it should use per machine while loading. >>Carbondata sorts the data at each node level to maintain the Btree for >>each node per segment. It improves the query performance by filtering >>faster if we have Btree at node level instead of each block level. >> >>1.Which version of Carbondata are you using? >>2.There are memory issues in Carbondata-1.0 version and are fixed current >>master. >>3.And you can improve the performance by enabling enable.unsafe.sort=true in >>carbon.properties file. But it is not supported if bucketing of columns are >>enabled. We are planning to support unsafe sort load for bucketing also in >>next version. >> >>Please send the executor log to know about the error you are facing. >> >> >> >> >> >> >>Regards, >>Ravindra >> >>On 25 March 2017 at 16:18, [hidden email] <[hidden email]> wrote: >> >>> Hello! >>> >>> *0、The failure* >>> When i insert into carbon table,i encounter failure。The failure is as >>> follow: >>> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most >>> recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): >>> ExecutorLostFailure (executor 1 exited caused by one of the running tasks) >>> Reason: Slave lost+details >>> >>> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): ExecutorLostFailure (executor 1 exited caused by one of the running tasks) Reason: Slave lost >>> Driver stacktrace: >>> >>> the stage: >>> >>> *Step:* >>> *1、start spark-shell* >>> ./bin/spark-shell \ >>> --master yarn-client \ >>> --num-executors 5 \ (I tried to set this parameter range from 10 to >>> 20,but the second job has only 5 tasks) >>> --executor-cores 5 \ >>> --executor-memory 20G \ >>> --driver-memory 8G \ >>> --queue root.default \ >>> --jars /xxx.jar >>> >>> //spark-default.conf spark.default.parallelism=320 >>> >>> import org.apache.spark.sql.CarbonContext >>> val cc = new CarbonContext(sc, "hdfs://xxxx/carbonData/CarbonStore") >>> >>> *2、create table* >>> cc.sql("CREATE TABLE IF NOT EXISTS xxxx_table (dt String,pt String,lst >>> String,plat String,sty String,is_pay String,is_vip String,is_mpack >>> String,scene String,status String,nw String,isc String,area String,spttag >>> String,province String,isp String,city String,tv String,hwm String,pip >>> String,fo String,sh String,mid String,user_id String,play_pv Int,spt_cnt >>> Int,prg_spt_cnt Int) row format delimited fields terminated by '|' STORED >>> BY 'carbondata' TBLPROPERTIES ('DICTIONARY_EXCLUDE'='pip,sh, >>> mid,fo,user_id','DICTIONARY_INCLUDE'='dt,pt,lst,plat,sty, >>> is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag, >>> province,isp,city,tv,hwm','NO_INVERTED_INDEX'='lst,plat,hwm, >>> pip,sh,mid','BUCKETNUMBER'='10','BUCKETCOLUMNS'='fo')") >>> >>> //notes,set "fo" column BUCKETCOLUMNS is to join another table >>> //the column distinct values are as follows: >>> >>> >>> *3、insert into table*(xxxx_table_tmp is a hive extenal orc table,has 20 >>> 0000 0000 records) >>> cc.sql("insert into xxxx_table select dt,pt,lst,plat,sty,is_pay,is_ >>> vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp, >>> city,tv,hwm,pip,fo,sh,mid,user_id ,play_pv,spt_cnt,prg_spt_cnt from >>> xxxx_table_tmp where dt='2017-01-01'") >>> >>> *4、spark split sql into two jobs,the first finished succeeded, but the >>> second failed:* >>> >>> >>> *5、The second job stage:* >>> >>> >>> >>> *Question:* >>> 1、Why the second job has only five jobs,but the first job has 994 jobs ?( >>> note:My hadoop cluster has 5 datanode) >>> I guess it caused the failure >>> 2、In the sources,i find DataLoadPartitionCoalescer.class,is it means that >>> "one datanode has only one partition ,and then the task is only one on the >>> datanode"? >>> 3、In the ExampleUtils class,"carbon.table.split.partition.enable" is set >>> as follow,but i can not find "carbon.table.split.partition.enable" in >>> other parts of the project。 >>> I set "carbon.table.split.partition.enable" to true, but the second >>> job has only five jobs.How to use this property? >>> ExampleUtils : >>> // whether use table split partition >>> // true -> use table split partition, support multiple partition >>> loading >>> // false -> use node split partition, support data load by host >>> partition >>> CarbonProperties.getInstance().addProperty("carbon.table.split.partition.enable", >>> "false") >>> 4、Insert into carbon table takes 3 hours ,but eventually failed 。How can >>> i speed it. >>> 5、in the spark-shell ,I tried to set this parameter range from 10 to >>> 20,but the second job has only 5 tasks >>> the other parameter executor-memory = 20G is enough? >>> >>> I need your help!Thank you very much! >>> >>> [hidden email] >>> >>> ------------------------------ >>> [hidden email] >>> >> >> >> >>-- >>Thanks & Regards, >>Ravi |
Container log : error executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM。 spark log: 17/03/26 23:40:30 ERROR YarnScheduler: Lost executor 2 on hd25: Container killed by YARN for exceeding memory limits. 49.0 GB of 49 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead. The test sql
|
Hi,
Please try to run on the master branch. As I mentioned earlier there are few memory issues in 1.0 release. We already initiated new release 1.1.0, so better try to run on the latest code. And also please make sure that property enable.unsafe.sort=true available to all nodes. It means carbon.properties should be updated in all nodes. Regards, Ravindra. On Sun, Mar 26, 2017, 22:27 a <[hidden email]> wrote: > > Container log : error executor.CoarseGrainedExecutorBackend: RECEIVED > SIGNAL 15: SIGTERM。 > spark log: 17/03/26 23:40:30 ERROR YarnScheduler: Lost executor 2 on > hd25: Container killed by YARN for exceeding memory limits. 49.0 GB of 49 > GB physical memory used. Consider boosting > spark.yarn.executor.memoryOverhead. > The test sql > > > > > > At 2017-03-26 23:34:36, "a" <[hidden email]> wrote: > > > > > >I have set the parameters as follow: > >1、fs.hdfs.impl.disable.cache=true > >2、dfs.socket.timeout=1800000 (Exception:aused by: java.io.IOException: Filesystem closed) > >3、dfs.datanode.socket.write.timeout=3600000 > >4、set carbondata property enable.unsafe.sort=true > >5、remove BUCKETCOLUMNS property from the create table sql > >6、set spark job parameter executor-memory=48G (from 20G to 48G) > > > > > >But it still failed, the error is "executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM。" > > > > > >Then i try to insert 40000 0000 records into carbondata table ,it works success. > > > > > >How can i insert 20 0000 0000 records into carbondata? > >Should me set executor-memory big enough? Or Should me generate the csv file from the hive table first ,then load the csv file into carbon table? > >Any body give me same help? > > > > > >Regards > >fish > > > > > > > > > > > > > > > >At 2017-03-26 00:34:18, "a" <[hidden email]> wrote: > >>Thank you Ravindra! > >>Version: > >>My carbondata version is 1.0,spark version is 1.6.3,hadoop version is 2.7.1,hive version is 1.1.0 > >>one of the containers log: > >>17/03/25 22:07:09 ERROR executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM > >>17/03/25 22:07:09 INFO storage.DiskBlockManager: Shutdown hook called > >>17/03/25 22:07:09 INFO util.ShutdownHookManager: Shutdown hook called > >>17/03/25 22:07:09 INFO util.ShutdownHookManager: Deleting directory /data1/hadoop/hd_space/tmp/nm-local-dir/usercache/storm/appcache/application_1490340325187_0042/spark-84b305f9-af7b-4f58-a809-700345a84109 > >>17/03/25 22:07:10 ERROR impl.ParallelReadMergeSorterImpl: pool-23-thread-2 > >>java.io.IOException: Error reading file: hdfs://xxxx_table_tmp/dt=2017-01-01/pt=ios/000006_0 > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next(RecordReaderImpl.java:1046) > >> at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger$OriginalReaderPair.next(OrcRawRecordMerger.java:263) > >> at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger.next(OrcRawRecordMerger.java:547) > >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next(OrcInputFormat.java:1234) > >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next(OrcInputFormat.java:1218) > >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$NullKeyRecordReader.next(OrcInputFormat.java:1150) > >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$NullKeyRecordReader.next(OrcInputFormat.java:1136) > >> at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:249) > >> at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:211) > >> at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73) > >> at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) > >> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > >> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > >> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > >> at org.apache.carbondata.spark.rdd.NewRddIterator.hasNext(NewCarbonDataLoadRDD.scala:412) > >> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.internalHasNext(InputProcessorStepImpl.java:163) > >> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.getBatch(InputProcessorStepImpl.java:221) > >> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.next(InputProcessorStepImpl.java:183) > >> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.next(InputProcessorStepImpl.java:117) > >> at org.apache.carbondata.processing.newflow.steps.DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl.java:80) > >> at org.apache.carbondata.processing.newflow.steps.DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl.java:73) > >> at org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl$SortIteratorThread.call(ParallelReadMergeSorterImpl.java:196) > >> at org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl$SortIteratorThread.call(ParallelReadMergeSorterImpl.java:177) > >> at java.util.concurrent.FutureTask.run(FutureTask.java:262) > >> at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > >> at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > >> at java.lang.Thread.run(Thread.java:745) > >>Caused by: java.io.IOException: Filesystem closed > >> at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:808) > >> at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy(DFSInputStream.java:868) > >> at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:934) > >> at java.io.DataInputStream.readFully(DataInputStream.java:195) > >> at org.apache.hadoop.hive.ql.io.orc.MetadataReader.readStripeFooter(MetadataReader.java:112) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripeFooter(RecordReaderImpl.java:228) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.beginReadStripe(RecordReaderImpl.java:805) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripe(RecordReaderImpl.java:776) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.advanceStripe(RecordReaderImpl.java:986) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.advanceToNextRow(RecordReaderImpl.java:1019) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next(RecordReaderImpl.java:1042) > >> ... 26 more > >>I will try to set enable.unsafe.sort=true and remove BUCKETCOLUMNS property ,and try again. > >> > >> > >>At 2017-03-25 20:55:03, "Ravindra Pesala" <[hidden email]> wrote: > >>>Hi, > >>> > >>>Carbodata launches one job per each node to sort the data at node level and > >>>avoid shuffling. Internally it uses threads to use parallel load. Please > >>>use carbon.number.of.cores.while.loading property in carbon.properties file > >>>and set the number of cores it should use per machine while loading. > >>>Carbondata sorts the data at each node level to maintain the Btree for > >>>each node per segment. It improves the query performance by filtering > >>>faster if we have Btree at node level instead of each block level. > >>> > >>>1.Which version of Carbondata are you using? > >>>2.There are memory issues in Carbondata-1.0 version and are fixed current > >>>master. > >>>3.And you can improve the performance by enabling enable.unsafe.sort=true in > >>>carbon.properties file. But it is not supported if bucketing of columns are > >>>enabled. We are planning to support unsafe sort load for bucketing also in > >>>next version. > >>> > >>>Please send the executor log to know about the error you are facing. > >>> > >>> > >>> > >>> > >>> > >>> > >>>Regards, > >>>Ravindra > >>> > >>>On 25 March 2017 at 16:18, [hidden email] <[hidden email]> wrote: > >>> > >>>> Hello! > >>>> > >>>> *0、The failure* > >>>> When i insert into carbon table,i encounter failure。The failure is as > >>>> follow: > >>>> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most > >>>> recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): > >>>> ExecutorLostFailure (executor 1 exited caused by one of the running tasks) > >>>> Reason: Slave lost+details > >>>> > >>>> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): ExecutorLostFailure (executor 1 exited caused by one of the running tasks) Reason: Slave lost > >>>> Driver stacktrace: > >>>> > >>>> the stage: > >>>> > >>>> *Step:* > >>>> *1、start spark-shell* > >>>> ./bin/spark-shell \ > >>>> --master yarn-client \ > >>>> --num-executors 5 \ (I tried to set this parameter range from 10 to > >>>> 20,but the second job has only 5 tasks) > >>>> --executor-cores 5 \ > >>>> --executor-memory 20G \ > >>>> --driver-memory 8G \ > >>>> --queue root.default \ > >>>> --jars /xxx.jar > >>>> > >>>> //spark-default.conf spark.default.parallelism=320 > >>>> > >>>> import org.apache.spark.sql.CarbonContext > >>>> val cc = new CarbonContext(sc, "hdfs://xxxx/carbonData/CarbonStore") > >>>> > >>>> *2、create table* > >>>> cc.sql("CREATE TABLE IF NOT EXISTS xxxx_table (dt String,pt String,lst > >>>> String,plat String,sty String,is_pay String,is_vip String,is_mpack > >>>> String,scene String,status String,nw String,isc String,area String,spttag > >>>> String,province String,isp String,city String,tv String,hwm String,pip > >>>> String,fo String,sh String,mid String,user_id String,play_pv Int,spt_cnt > >>>> Int,prg_spt_cnt Int) row format delimited fields terminated by '|' STORED > >>>> BY 'carbondata' TBLPROPERTIES ('DICTIONARY_EXCLUDE'='pip,sh, > >>>> mid,fo,user_id','DICTIONARY_INCLUDE'='dt,pt,lst,plat,sty, > >>>> is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag, > >>>> province,isp,city,tv,hwm','NO_INVERTED_INDEX'='lst,plat,hwm, > >>>> pip,sh,mid','BUCKETNUMBER'='10','BUCKETCOLUMNS'='fo')") > >>>> > >>>> //notes,set "fo" column BUCKETCOLUMNS is to join another table > >>>> //the column distinct values are as follows: > >>>> > >>>> > >>>> *3、insert into table*(xxxx_table_tmp is a hive extenal orc table,has 20 > >>>> 0000 0000 records) > >>>> cc.sql("insert into xxxx_table select dt,pt,lst,plat,sty,is_pay,is_ > >>>> vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp, > >>>> city,tv,hwm,pip,fo,sh,mid,user_id ,play_pv,spt_cnt,prg_spt_cnt from > >>>> xxxx_table_tmp where dt='2017-01-01'") > >>>> > >>>> *4、spark split sql into two jobs,the first finished succeeded, but the > >>>> second failed:* > >>>> > >>>> > >>>> *5、The second job stage:* > >>>> > >>>> > >>>> > >>>> *Question:* > >>>> 1、Why the second job has only five jobs,but the first job has 994 jobs ?( > >>>> note:My hadoop cluster has 5 datanode) > >>>> I guess it caused the failure > >>>> 2、In the sources,i find DataLoadPartitionCoalescer.class,is it means that > >>>> "one datanode has only one partition ,and then the task is only one on the > >>>> datanode"? > >>>> 3、In the ExampleUtils class,"carbon.table.split.partition.enable" is set > >>>> as follow,but i can not find "carbon.table.split.partition.enable" in > >>>> other parts of the project。 > >>>> I set "carbon.table.split.partition.enable" to true, but the second > >>>> job has only five jobs.How to use this property? > >>>> ExampleUtils : > >>>> // whether use table split partition > >>>> // true -> use table split partition, support multiple partition > >>>> loading > >>>> // false -> use node split partition, support data load by host > >>>> partition > >>>> CarbonProperties.getInstance().addProperty("carbon.table.split.partition.enable", > >>>> "false") > >>>> 4、Insert into carbon table takes 3 hours ,but eventually failed 。How can > >>>> i speed it. > >>>> 5、in the spark-shell ,I tried to set this parameter range from 10 to > >>>> 20,but the second job has only 5 tasks > >>>> the other parameter executor-memory = 20G is enough? > >>>> > >>>> I need your help!Thank you very much! > >>>> > >>>> [hidden email] > >>>> > >>>> ------------------------------ > >>>> [hidden email] > >>>> > >>> > >>> > >>> > >>>-- > >>>Thanks & Regards, > >>>Ravi > > |
In reply to this post by a
I download the newest sourcecode (master) and compile,generate the jar carbondata_2.11-1.1.0-incubating-SNAPSHOT-shade-hadoop2.7.2.jar
Then i use spark2.1 test again.The error logs are as follow: Container log : 17/03/27 02:27:21 ERROR newflow.DataLoadExecutor: Executor task launch worker-9 Data Loading failed for table carbon_table java.lang.NullPointerException at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) 17/03/27 02:27:21 INFO rdd.NewDataFrameLoaderRDD: DataLoad failure org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.NullPointerException at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) ... 10 more 17/03/27 02:27:21 ERROR rdd.NewDataFrameLoaderRDD: Executor task launch worker-9 org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.NullPointerException at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) ... 10 more 17/03/27 02:27:21 ERROR executor.Executor: Exception in task 0.3 in stage 2.0 (TID 538) org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.NullPointerException at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) ... 10 more Spark log: ERROR 27-03 02:27:21,407 - Task 0 in stage 2.0 failed 4 times; aborting job ERROR 27-03 02:27:21,419 - main load data frame failed org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 538, hd25): org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.NullPointerException at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) ... 10 more Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929) at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) at org.apache.spark.rdd.RDD.collect(RDD.scala:926) at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadDataFrame$1(CarbonDataRDDFactory.scala:665) at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadCarbonData(CarbonDataRDDFactory.scala:794) at org.apache.spark.sql.execution.command.LoadTable.run(carbonTableSchema.scala:579) at org.apache.spark.sql.execution.command.LoadTableByInsert.run(carbonTableSchema.scala:297) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) at $line23.$read$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42) at $line23.$read$$iwC$$iwC$$iwC.<init>(<console>:44) at $line23.$read$$iwC$$iwC.<init>(<console>:46) at $line23.$read$$iwC.<init>(<console>:48) at $line23.$read.<init>(<console>:50) at $line23.$read$.<init>(<console>:54) at $line23.$read$.<clinit>(<console>) at $line23.$eval$.<init>(<console>:7) at $line23.$eval$.<clinit>(<console>) at $line23.$eval.$print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065) at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346) at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857) at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902) at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657) at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665) at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945) at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) at org.apache.spark.repl.Main$.main(Main.scala:31) at org.apache.spark.repl.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.NullPointerException at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) ... 10 more ERROR 27-03 02:27:21,422 - main org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 538, hd25): org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.NullPointerException at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) ... 10 more Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929) at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) at org.apache.spark.rdd.RDD.collect(RDD.scala:926) at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadDataFrame$1(CarbonDataRDDFactory.scala:665) at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadCarbonData(CarbonDataRDDFactory.scala:794) at org.apache.spark.sql.execution.command.LoadTable.run(carbonTableSchema.scala:579) at org.apache.spark.sql.execution.command.LoadTableByInsert.run(carbonTableSchema.scala:297) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) at $line23.$read$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42) at $line23.$read$$iwC$$iwC$$iwC.<init>(<console>:44) at $line23.$read$$iwC$$iwC.<init>(<console>:46) at $line23.$read$$iwC.<init>(<console>:48) at $line23.$read.<init>(<console>:50) at $line23.$read$.<init>(<console>:54) at $line23.$read$.<clinit>(<console>) at $line23.$eval$.<init>(<console>:7) at $line23.$eval$.<clinit>(<console>) at $line23.$eval.$print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065) at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346) at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857) at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902) at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657) at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665) at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945) at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) at org.apache.spark.repl.Main$.main(Main.scala:31) at org.apache.spark.repl.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.NullPointerException at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) ... 10 more AUDIT 27-03 02:27:21,453 - [hd21][storm][Thread-1]Data load is failed for default.carbon_table ERROR 27-03 02:27:21,453 - main java.lang.Exception: DataLoad failure: Data Loading failed for table carbon_table at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadCarbonData(CarbonDataRDDFactory.scala:937) at org.apache.spark.sql.execution.command.LoadTable.run(carbonTableSchema.scala:579) at org.apache.spark.sql.execution.command.LoadTableByInsert.run(carbonTableSchema.scala:297) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38) at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) at $line23.$read$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42) at $line23.$read$$iwC$$iwC$$iwC.<init>(<console>:44) at $line23.$read$$iwC$$iwC.<init>(<console>:46) at $line23.$read$$iwC.<init>(<console>:48) at $line23.$read.<init>(<console>:50) at $line23.$read$.<init>(<console>:54) at $line23.$read$.<clinit>(<console>) at $line23.$eval$.<init>(<console>:7) at $line23.$eval$.<clinit>(<console>) at $line23.$eval.$print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065) at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346) at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857) at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902) at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657) at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665) at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945) at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) at org.apache.spark.repl.Main$.main(Main.scala:31) at org.apache.spark.repl.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) AUDIT 27-03 02:27:21,454 - [hd21][storm][Thread-1]Dataload failure for default.carbon_table. Please check the logs java.lang.Exception: DataLoad failure: Data Loading failed for table carbon_table at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadCarbonData(CarbonDataRDDFactory.scala:937) at org.apache.spark.sql.execution.command.LoadTable.run(carbonTableSchema.scala:579) at org.apache.spark.sql.execution.command.LoadTableByInsert.run(carbonTableSchema.scala:297) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31) at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36) at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38) at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) at $iwC$$iwC$$iwC$$iwC.<init>(<console>:42) at $iwC$$iwC$$iwC.<init>(<console>:44) at $iwC$$iwC.<init>(<console>:46) at $iwC.<init>(<console>:48) at <init>(<console>:50) at .<init>(<console>:54) at .<clinit>(<console>) at .<init>(<console>:7) at .<clinit>(<console>) at $print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065) at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346) at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857) at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902) at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657) at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665) at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945) at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) at org.apache.spark.repl.Main$.main(Main.scala:31) at org.apache.spark.repl.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) At 2017-03-27 00:42:28, "a" <[hidden email]> wrote: Container log : error executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM。 spark log: 17/03/26 23:40:30 ERROR YarnScheduler: Lost executor 2 on hd25: Container killed by YARN for exceeding memory limits. 49.0 GB of 49 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead. The test sql At 2017-03-26 23:34:36, "a" <[hidden email]> wrote: > > >I have set the parameters as follow: >1、fs.hdfs.impl.disable.cache=true >2、dfs.socket.timeout=1800000 (Exception:aused by: java.io.IOException: Filesystem closed) >3、dfs.datanode.socket.write.timeout=3600000 >4、set carbondata property enable.unsafe.sort=true >5、remove BUCKETCOLUMNS property from the create table sql >6、set spark job parameter executor-memory=48G (from 20G to 48G) > > >But it still failed, the error is "executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM。" > > >Then i try to insert 40000 0000 records into carbondata table ,it works success. > > >How can i insert 20 0000 0000 records into carbondata? >Should me set executor-memory big enough? Or Should me generate the csv file from the hive table first ,then load the csv file into carbon table? >Any body give me same help? > > >Regards >fish > > > > > > > >At 2017-03-26 00:34:18, "a" <[hidden email]> wrote: >>Thank you Ravindra! >>Version: >>My carbondata version is 1.0,spark version is 1.6.3,hadoop version is 2.7.1,hive version is 1.1.0 >>one of the containers log: >>17/03/25 22:07:09 ERROR executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM >>17/03/25 22:07:09 INFO storage.DiskBlockManager: Shutdown hook called >>17/03/25 22:07:09 INFO util.ShutdownHookManager: Shutdown hook called >>17/03/25 22:07:09 INFO util.ShutdownHookManager: Deleting directory /data1/hadoop/hd_space/tmp/nm-local-dir/usercache/storm/appcache/application_1490340325187_0042/spark-84b305f9-af7b-4f58-a809-700345a84109 >>17/03/25 22:07:10 ERROR impl.ParallelReadMergeSorterImpl: pool-23-thread-2 >>java.io.IOException: Error reading file: hdfs://xxxx_table_tmp/dt=2017-01-01/pt=ios/000006_0 >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next(RecordReaderImpl.java:1046) >> at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger$OriginalReaderPair.next(OrcRawRecordMerger.java:263) >> at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger.next(OrcRawRecordMerger.java:547) >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next(OrcInputFormat.java:1234) >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next(OrcInputFormat.java:1218) >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$NullKeyRecordReader.next(OrcInputFormat.java:1150) >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$NullKeyRecordReader.next(OrcInputFormat.java:1136) >> at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:249) >> at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:211) >> at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73) >> at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) >> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >> at org.apache.carbondata.spark.rdd.NewRddIterator.hasNext(NewCarbonDataLoadRDD.scala:412) >> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.internalHasNext(InputProcessorStepImpl.java:163) >> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.getBatch(InputProcessorStepImpl.java:221) >> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.next(InputProcessorStepImpl.java:183) >> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.next(InputProcessorStepImpl.java:117) >> at org.apache.carbondata.processing.newflow.steps.DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl.java:80) >> at org.apache.carbondata.processing.newflow.steps.DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl.java:73) >> at org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl$SortIteratorThread.call(ParallelReadMergeSorterImpl.java:196) >> at org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl$SortIteratorThread.call(ParallelReadMergeSorterImpl.java:177) >> at java.util.concurrent.FutureTask.run(FutureTask.java:262) >> at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) >> at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) >> at java.lang.Thread.run(Thread.java:745) >>Caused by: java.io.IOException: Filesystem closed >> at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:808) >> at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy(DFSInputStream.java:868) >> at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:934) >> at java.io.DataInputStream.readFully(DataInputStream.java:195) >> at org.apache.hadoop.hive.ql.io.orc.MetadataReader.readStripeFooter(MetadataReader.java:112) >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripeFooter(RecordReaderImpl.java:228) >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.beginReadStripe(RecordReaderImpl.java:805) >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripe(RecordReaderImpl.java:776) >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.advanceStripe(RecordReaderImpl.java:986) >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.advanceToNextRow(RecordReaderImpl.java:1019) >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next(RecordReaderImpl.java:1042) >> ... 26 more >>I will try to set enable.unsafe.sort=true and remove BUCKETCOLUMNS property ,and try again. >> >> >>At 2017-03-25 20:55:03, "Ravindra Pesala" <[hidden email]> wrote: >>>Hi, >>> >>>Carbodata launches one job per each node to sort the data at node level and >>>avoid shuffling. Internally it uses threads to use parallel load. Please >>>use carbon.number.of.cores.while.loading property in carbon.properties file >>>and set the number of cores it should use per machine while loading. >>>Carbondata sorts the data at each node level to maintain the Btree for >>>each node per segment. It improves the query performance by filtering >>>faster if we have Btree at node level instead of each block level. >>> >>>1.Which version of Carbondata are you using? >>>2.There are memory issues in Carbondata-1.0 version and are fixed current >>>master. >>>3.And you can improve the performance by enabling enable.unsafe.sort=true in >>>carbon.properties file. But it is not supported if bucketing of columns are >>>enabled. We are planning to support unsafe sort load for bucketing also in >>>next version. >>> >>>Please send the executor log to know about the error you are facing. >>> >>> >>> >>> >>> >>> >>>Regards, >>>Ravindra >>> >>>On 25 March 2017 at 16:18, [hidden email] <[hidden email]> wrote: >>> >>>> Hello! >>>> >>>> *0、The failure* >>>> When i insert into carbon table,i encounter failure。The failure is as >>>> follow: >>>> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most >>>> recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): >>>> ExecutorLostFailure (executor 1 exited caused by one of the running tasks) >>>> Reason: Slave lost+details >>>> >>>> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): ExecutorLostFailure (executor 1 exited caused by one of the running tasks) Reason: Slave lost >>>> Driver stacktrace: >>>> >>>> the stage: >>>> >>>> *Step:* >>>> *1、start spark-shell* >>>> ./bin/spark-shell \ >>>> --master yarn-client \ >>>> --num-executors 5 \ (I tried to set this parameter range from 10 to >>>> 20,but the second job has only 5 tasks) >>>> --executor-cores 5 \ >>>> --executor-memory 20G \ >>>> --driver-memory 8G \ >>>> --queue root.default \ >>>> --jars /xxx.jar >>>> >>>> //spark-default.conf spark.default.parallelism=320 >>>> >>>> import org.apache.spark.sql.CarbonContext >>>> val cc = new CarbonContext(sc, "hdfs://xxxx/carbonData/CarbonStore") >>>> >>>> *2、create table* >>>> cc.sql("CREATE TABLE IF NOT EXISTS xxxx_table (dt String,pt String,lst >>>> String,plat String,sty String,is_pay String,is_vip String,is_mpack >>>> String,scene String,status String,nw String,isc String,area String,spttag >>>> String,province String,isp String,city String,tv String,hwm String,pip >>>> String,fo String,sh String,mid String,user_id String,play_pv Int,spt_cnt >>>> Int,prg_spt_cnt Int) row format delimited fields terminated by '|' STORED >>>> BY 'carbondata' TBLPROPERTIES ('DICTIONARY_EXCLUDE'='pip,sh, >>>> mid,fo,user_id','DICTIONARY_INCLUDE'='dt,pt,lst,plat,sty, >>>> is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag, >>>> province,isp,city,tv,hwm','NO_INVERTED_INDEX'='lst,plat,hwm, >>>> pip,sh,mid','BUCKETNUMBER'='10','BUCKETCOLUMNS'='fo')") >>>> >>>> //notes,set "fo" column BUCKETCOLUMNS is to join another table >>>> //the column distinct values are as follows: >>>> >>>> >>>> *3、insert into table*(xxxx_table_tmp is a hive extenal orc table,has 20 >>>> 0000 0000 records) >>>> cc.sql("insert into xxxx_table select dt,pt,lst,plat,sty,is_pay,is_ >>>> vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp, >>>> city,tv,hwm,pip,fo,sh,mid,user_id ,play_pv,spt_cnt,prg_spt_cnt from >>>> xxxx_table_tmp where dt='2017-01-01'") >>>> >>>> *4、spark split sql into two jobs,the first finished succeeded, but the >>>> second failed:* >>>> >>>> >>>> *5、The second job stage:* >>>> >>>> >>>> >>>> *Question:* >>>> 1、Why the second job has only five jobs,but the first job has 994 jobs ?( >>>> note:My hadoop cluster has 5 datanode) >>>> I guess it caused the failure >>>> 2、In the sources,i find DataLoadPartitionCoalescer.class,is it means that >>>> "one datanode has only one partition ,and then the task is only one on the >>>> datanode"? >>>> 3、In the ExampleUtils class,"carbon.table.split.partition.enable" is set >>>> as follow,but i can not find "carbon.table.split.partition.enable" in >>>> other parts of the project。 >>>> I set "carbon.table.split.partition.enable" to true, but the second >>>> job has only five jobs.How to use this property? >>>> ExampleUtils : >>>> // whether use table split partition >>>> // true -> use table split partition, support multiple partition >>>> loading >>>> // false -> use node split partition, support data load by host >>>> partition >>>> CarbonProperties.getInstance().addProperty("carbon.table.split.partition.enable", >>>> "false") >>>> 4、Insert into carbon table takes 3 hours ,but eventually failed 。How can >>>> i speed it. >>>> 5、in the spark-shell ,I tried to set this parameter range from 10 to >>>> 20,but the second job has only 5 tasks >>>> the other parameter executor-memory = 20G is enough? >>>> >>>> I need your help!Thank you very much! >>>> >>>> [hidden email] >>>> >>>> ------------------------------ >>>> [hidden email] >>>> >>> >>> >>> >>>-- >>>Thanks & Regards, >>>Ravi |
Hi,
It is little weird, I tried to reproduce this issue but I am not successful. Can you make sure that latest jar is updated in all the datanodes and driver. There may be possibility that old jar is still referring in either driver or in datanode. Regards, Ravindra On 27 March 2017 at 01:40, a <[hidden email]> wrote: > I download the newest sourcecode (master) and compile,generate the jar > carbondata_2.11-1.1.0-incubating-SNAPSHOT-shade-hadoop2.7.2.jar > Then i use spark2.1 test again.The error logs are as follow: > > > Container log : > 17/03/27 02:27:21 ERROR newflow.DataLoadExecutor: Executor task launch > worker-9 Data Loading failed for table carbon_table > java.lang.NullPointerException > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java: > 158) > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:43) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$ > anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD. > compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask. > scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run( > Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker( > ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run( > ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > 17/03/27 02:27:21 INFO rdd.NewDataFrameLoaderRDD: DataLoad failure > org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: > Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$ > anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD. > compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask. > scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run( > Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker( > ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run( > ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java: > 158) > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more > 17/03/27 02:27:21 ERROR rdd.NewDataFrameLoaderRDD: Executor task launch > worker-9 > org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: > Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$ > anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD. > compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask. > scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run( > Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker( > ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run( > ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java: > 158) > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more > 17/03/27 02:27:21 ERROR executor.Executor: Exception in task 0.3 in stage > 2.0 (TID 538) > org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: > Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$ > anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD. > compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask. > scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run( > Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker( > ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run( > ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java: > 158) > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more > > > > Spark log: > > ERROR 27-03 02:27:21,407 - Task 0 in stage 2.0 failed 4 times; aborting job > ERROR 27-03 02:27:21,419 - main load data frame failed > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 > in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage > 2.0 (TID 538, hd25): org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: > Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$ > anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD. > compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask. > scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run( > Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker( > ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run( > ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java: > 158) > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more > > > Driver stacktrace: > at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$ > scheduler$DAGScheduler$$failJobAndIndependentStages( > DAGScheduler.scala:1431) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > abortStage$1.apply(DAGScheduler.scala:1419) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > abortStage$1.apply(DAGScheduler.scala:1418) > at scala.collection.mutable.ResizableArray$class.foreach( > ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach( > ArrayBuffer.scala:47) > at org.apache.spark.scheduler.DAGScheduler.abortStage( > DAGScheduler.scala:1418) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > handleTaskSetFailed$1.apply(DAGScheduler.scala:799) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > handleTaskSetFailed$1.apply(DAGScheduler.scala:799) > at scala.Option.foreach(Option.scala:236) > at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed( > DAGScheduler.scala:799) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. > doOnReceive(DAGScheduler.scala:1640) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. > onReceive(DAGScheduler.scala:1599) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. > onReceive(DAGScheduler.scala:1588) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at org.apache.spark.scheduler.DAGScheduler.runJob( > DAGScheduler.scala:620) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929) > at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD. > scala:927) > at org.apache.spark.rdd.RDDOperationScope$.withScope( > RDDOperationScope.scala:150) > at org.apache.spark.rdd.RDDOperationScope$.withScope( > RDDOperationScope.scala:111) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) > at org.apache.spark.rdd.RDD.collect(RDD.scala:926) > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$. > loadDataFrame$1(CarbonDataRDDFactory.scala:665) > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$. > loadCarbonData(CarbonDataRDDFactory.scala:794) > at org.apache.spark.sql.execution.command.LoadTable. > run(carbonTableSchema.scala:579) > at org.apache.spark.sql.execution.command.LoadTableByInsert.run( > carbonTableSchema.scala:297) > at org.apache.spark.sql.execution.ExecutedCommand. > sideEffectResult$lzycompute(commands.scala:58) > at org.apache.spark.sql.execution.ExecutedCommand. > sideEffectResult(commands.scala:56) > at org.apache.spark.sql.execution.ExecutedCommand. > doExecute(commands.scala:70) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$ > execute$5.apply(SparkPlan.scala:132) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$ > execute$5.apply(SparkPlan.scala:130) > at org.apache.spark.rdd.RDDOperationScope$.withScope( > RDDOperationScope.scala:150) > at org.apache.spark.sql.execution.SparkPlan.execute( > SparkPlan.scala:130) > at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute( > QueryExecution.scala:55) > at org.apache.spark.sql.execution.QueryExecution. > toRdd(QueryExecution.scala:55) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) > at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init> > (<console>:31) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(< > console>:36) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console> > :38) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) > at $line23.$read$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42) > at $line23.$read$$iwC$$iwC$$iwC.<init>(<console>:44) > at $line23.$read$$iwC$$iwC.<init>(<console>:46) > at $line23.$read$$iwC.<init>(<console>:48) > at $line23.$read.<init>(<console>:50) > at $line23.$read$.<init>(<console>:54) > at $line23.$read$.<clinit>(<console>) > at $line23.$eval$.<init>(<console>:7) > at $line23.$eval$.<clinit>(<console>) > at $line23.$eval.$print(<console>) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke( > NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call( > SparkIMain.scala:1065) > at org.apache.spark.repl.SparkIMain$Request.loadAndRun( > SparkIMain.scala:1346) > at org.apache.spark.repl.SparkIMain.loadAndRunReq$1( > SparkIMain.scala:840) > at org.apache.spark.repl.SparkIMain.interpret( > SparkIMain.scala:871) > at org.apache.spark.repl.SparkIMain.interpret( > SparkIMain.scala:819) > at org.apache.spark.repl.SparkILoop.reallyInterpret$1( > SparkILoop.scala:857) > at org.apache.spark.repl.SparkILoop.interpretStartingWith( > SparkILoop.scala:902) > at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) > at org.apache.spark.repl.SparkILoop.processLine$1( > SparkILoop.scala:657) > at org.apache.spark.repl.SparkILoop.innerLoop$1( > SparkILoop.scala:665) > at org.apache.spark.repl.SparkILoop.org$apache$spark$ > repl$SparkILoop$$loop(SparkILoop.scala:670) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader( > ScalaClassLoader.scala:135) > at org.apache.spark.repl.SparkILoop.org$apache$spark$ > repl$SparkILoop$$process(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) > at org.apache.spark.repl.Main$.main(Main.scala:31) > at org.apache.spark.repl.Main.main(Main.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke( > NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$ > deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) > at org.apache.spark.deploy.SparkSubmit$.doRunMain$1( > SparkSubmit.scala:181) > at org.apache.spark.deploy.SparkSubmit$.submit( > SparkSubmit.scala:206) > at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit. > scala:121) > at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) > Caused by: org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: > Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$ > anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD. > compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask. > scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run( > Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker( > ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run( > ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java: > 158) > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more > ERROR 27-03 02:27:21,422 - main > org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 > in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage > 2.0 (TID 538, hd25): org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: > Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$ > anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD. > compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask. > scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run( > Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker( > ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run( > ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java: > 158) > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more > > > Driver stacktrace: > at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$ > scheduler$DAGScheduler$$failJobAndIndependentStages( > DAGScheduler.scala:1431) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > abortStage$1.apply(DAGScheduler.scala:1419) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > abortStage$1.apply(DAGScheduler.scala:1418) > at scala.collection.mutable.ResizableArray$class.foreach( > ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach( > ArrayBuffer.scala:47) > at org.apache.spark.scheduler.DAGScheduler.abortStage( > DAGScheduler.scala:1418) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > handleTaskSetFailed$1.apply(DAGScheduler.scala:799) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > handleTaskSetFailed$1.apply(DAGScheduler.scala:799) > at scala.Option.foreach(Option.scala:236) > at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed( > DAGScheduler.scala:799) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. > doOnReceive(DAGScheduler.scala:1640) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. > onReceive(DAGScheduler.scala:1599) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. > onReceive(DAGScheduler.scala:1588) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at org.apache.spark.scheduler.DAGScheduler.runJob( > DAGScheduler.scala:620) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929) > at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD. > scala:927) > at org.apache.spark.rdd.RDDOperationScope$.withScope( > RDDOperationScope.scala:150) > at org.apache.spark.rdd.RDDOperationScope$.withScope( > RDDOperationScope.scala:111) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) > at org.apache.spark.rdd.RDD.collect(RDD.scala:926) > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$. > loadDataFrame$1(CarbonDataRDDFactory.scala:665) > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$. > loadCarbonData(CarbonDataRDDFactory.scala:794) > at org.apache.spark.sql.execution.command.LoadTable. > run(carbonTableSchema.scala:579) > at org.apache.spark.sql.execution.command.LoadTableByInsert.run( > carbonTableSchema.scala:297) > at org.apache.spark.sql.execution.ExecutedCommand. > sideEffectResult$lzycompute(commands.scala:58) > at org.apache.spark.sql.execution.ExecutedCommand. > sideEffectResult(commands.scala:56) > at org.apache.spark.sql.execution.ExecutedCommand. > doExecute(commands.scala:70) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$ > execute$5.apply(SparkPlan.scala:132) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$ > execute$5.apply(SparkPlan.scala:130) > at org.apache.spark.rdd.RDDOperationScope$.withScope( > RDDOperationScope.scala:150) > at org.apache.spark.sql.execution.SparkPlan.execute( > SparkPlan.scala:130) > at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute( > QueryExecution.scala:55) > at org.apache.spark.sql.execution.QueryExecution. > toRdd(QueryExecution.scala:55) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) > at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init> > (<console>:31) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(< > console>:36) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console> > :38) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) > at $line23.$read$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42) > at $line23.$read$$iwC$$iwC$$iwC.<init>(<console>:44) > at $line23.$read$$iwC$$iwC.<init>(<console>:46) > at $line23.$read$$iwC.<init>(<console>:48) > at $line23.$read.<init>(<console>:50) > at $line23.$read$.<init>(<console>:54) > at $line23.$read$.<clinit>(<console>) > at $line23.$eval$.<init>(<console>:7) > at $line23.$eval$.<clinit>(<console>) > at $line23.$eval.$print(<console>) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke( > NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call( > SparkIMain.scala:1065) > at org.apache.spark.repl.SparkIMain$Request.loadAndRun( > SparkIMain.scala:1346) > at org.apache.spark.repl.SparkIMain.loadAndRunReq$1( > SparkIMain.scala:840) > at org.apache.spark.repl.SparkIMain.interpret( > SparkIMain.scala:871) > at org.apache.spark.repl.SparkIMain.interpret( > SparkIMain.scala:819) > at org.apache.spark.repl.SparkILoop.reallyInterpret$1( > SparkILoop.scala:857) > at org.apache.spark.repl.SparkILoop.interpretStartingWith( > SparkILoop.scala:902) > at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) > at org.apache.spark.repl.SparkILoop.processLine$1( > SparkILoop.scala:657) > at org.apache.spark.repl.SparkILoop.innerLoop$1( > SparkILoop.scala:665) > at org.apache.spark.repl.SparkILoop.org$apache$spark$ > repl$SparkILoop$$loop(SparkILoop.scala:670) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader( > ScalaClassLoader.scala:135) > at org.apache.spark.repl.SparkILoop.org$apache$spark$ > repl$SparkILoop$$process(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) > at org.apache.spark.repl.Main$.main(Main.scala:31) > at org.apache.spark.repl.Main.main(Main.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke( > NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$ > deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) > at org.apache.spark.deploy.SparkSubmit$.doRunMain$1( > SparkSubmit.scala:181) > at org.apache.spark.deploy.SparkSubmit$.submit( > SparkSubmit.scala:206) > at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit. > scala:121) > at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) > Caused by: org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: > Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$ > anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD. > compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask. > scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run( > Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker( > ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run( > ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) > Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java: > 158) > at org.apache.carbondata.processing.newflow. > DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow. > DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more > AUDIT 27-03 02:27:21,453 - [hd21][storm][Thread-1]Data load is failed for > default.carbon_table > ERROR 27-03 02:27:21,453 - main > java.lang.Exception: DataLoad failure: Data Loading failed for table > carbon_table > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$. > loadCarbonData(CarbonDataRDDFactory.scala:937) > at org.apache.spark.sql.execution.command.LoadTable. > run(carbonTableSchema.scala:579) > at org.apache.spark.sql.execution.command.LoadTableByInsert.run( > carbonTableSchema.scala:297) > at org.apache.spark.sql.execution.ExecutedCommand. > sideEffectResult$lzycompute(commands.scala:58) > at org.apache.spark.sql.execution.ExecutedCommand. > sideEffectResult(commands.scala:56) > at org.apache.spark.sql.execution.ExecutedCommand. > doExecute(commands.scala:70) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$ > execute$5.apply(SparkPlan.scala:132) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$ > execute$5.apply(SparkPlan.scala:130) > at org.apache.spark.rdd.RDDOperationScope$.withScope( > RDDOperationScope.scala:150) > at org.apache.spark.sql.execution.SparkPlan.execute( > SparkPlan.scala:130) > at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute( > QueryExecution.scala:55) > at org.apache.spark.sql.execution.QueryExecution. > toRdd(QueryExecution.scala:55) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) > at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init> > (<console>:31) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(< > console>:36) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console> > :38) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) > at $line23.$read$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42) > at $line23.$read$$iwC$$iwC$$iwC.<init>(<console>:44) > at $line23.$read$$iwC$$iwC.<init>(<console>:46) > at $line23.$read$$iwC.<init>(<console>:48) > at $line23.$read.<init>(<console>:50) > at $line23.$read$.<init>(<console>:54) > at $line23.$read$.<clinit>(<console>) > at $line23.$eval$.<init>(<console>:7) > at $line23.$eval$.<clinit>(<console>) > at $line23.$eval.$print(<console>) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke( > NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call( > SparkIMain.scala:1065) > at org.apache.spark.repl.SparkIMain$Request.loadAndRun( > SparkIMain.scala:1346) > at org.apache.spark.repl.SparkIMain.loadAndRunReq$1( > SparkIMain.scala:840) > at org.apache.spark.repl.SparkIMain.interpret( > SparkIMain.scala:871) > at org.apache.spark.repl.SparkIMain.interpret( > SparkIMain.scala:819) > at org.apache.spark.repl.SparkILoop.reallyInterpret$1( > SparkILoop.scala:857) > at org.apache.spark.repl.SparkILoop.interpretStartingWith( > SparkILoop.scala:902) > at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) > at org.apache.spark.repl.SparkILoop.processLine$1( > SparkILoop.scala:657) > at org.apache.spark.repl.SparkILoop.innerLoop$1( > SparkILoop.scala:665) > at org.apache.spark.repl.SparkILoop.org$apache$spark$ > repl$SparkILoop$$loop(SparkILoop.scala:670) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader( > ScalaClassLoader.scala:135) > at org.apache.spark.repl.SparkILoop.org$apache$spark$ > repl$SparkILoop$$process(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) > at org.apache.spark.repl.Main$.main(Main.scala:31) > at org.apache.spark.repl.Main.main(Main.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke( > NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$ > deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) > at org.apache.spark.deploy.SparkSubmit$.doRunMain$1( > SparkSubmit.scala:181) > at org.apache.spark.deploy.SparkSubmit$.submit( > SparkSubmit.scala:206) > at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit. > scala:121) > at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) > AUDIT 27-03 02:27:21,454 - [hd21][storm][Thread-1]Dataload failure for > default.carbon_table. Please check the logs > java.lang.Exception: DataLoad failure: Data Loading failed for table > carbon_table > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$. > loadCarbonData(CarbonDataRDDFactory.scala:937) > at org.apache.spark.sql.execution.command.LoadTable. > run(carbonTableSchema.scala:579) > at org.apache.spark.sql.execution.command.LoadTableByInsert.run( > carbonTableSchema.scala:297) > at org.apache.spark.sql.execution.ExecutedCommand. > sideEffectResult$lzycompute(commands.scala:58) > at org.apache.spark.sql.execution.ExecutedCommand. > sideEffectResult(commands.scala:56) > at org.apache.spark.sql.execution.ExecutedCommand. > doExecute(commands.scala:70) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$ > execute$5.apply(SparkPlan.scala:132) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$ > execute$5.apply(SparkPlan.scala:130) > at org.apache.spark.rdd.RDDOperationScope$.withScope( > RDDOperationScope.scala:150) > at org.apache.spark.sql.execution.SparkPlan.execute( > SparkPlan.scala:130) > at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute( > QueryExecution.scala:55) > at org.apache.spark.sql.execution.QueryExecution. > toRdd(QueryExecution.scala:55) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) > at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38) > at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) > at $iwC$$iwC$$iwC$$iwC.<init>(<console>:42) > at $iwC$$iwC$$iwC.<init>(<console>:44) > at $iwC$$iwC.<init>(<console>:46) > at $iwC.<init>(<console>:48) > at <init>(<console>:50) > at .<init>(<console>:54) > at .<clinit>(<console>) > at .<init>(<console>:7) > at .<clinit>(<console>) > at $print(<console>) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke( > NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call( > SparkIMain.scala:1065) > at org.apache.spark.repl.SparkIMain$Request.loadAndRun( > SparkIMain.scala:1346) > at org.apache.spark.repl.SparkIMain.loadAndRunReq$1( > SparkIMain.scala:840) > at org.apache.spark.repl.SparkIMain.interpret( > SparkIMain.scala:871) > at org.apache.spark.repl.SparkIMain.interpret( > SparkIMain.scala:819) > at org.apache.spark.repl.SparkILoop.reallyInterpret$1( > SparkILoop.scala:857) > at org.apache.spark.repl.SparkILoop.interpretStartingWith( > SparkILoop.scala:902) > at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) > at org.apache.spark.repl.SparkILoop.processLine$1( > SparkILoop.scala:657) > at org.apache.spark.repl.SparkILoop.innerLoop$1( > SparkILoop.scala:665) > at org.apache.spark.repl.SparkILoop.org$apache$spark$ > repl$SparkILoop$$loop(SparkILoop.scala:670) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop$$anonfun$org$ > apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader( > ScalaClassLoader.scala:135) > at org.apache.spark.repl.SparkILoop.org$apache$spark$ > repl$SparkILoop$$process(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) > at org.apache.spark.repl.Main$.main(Main.scala:31) > at org.apache.spark.repl.Main.main(Main.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke( > NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$ > deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) > at org.apache.spark.deploy.SparkSubmit$.doRunMain$1( > SparkSubmit.scala:181) > at org.apache.spark.deploy.SparkSubmit$.submit( > SparkSubmit.scala:206) > at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit. > scala:121) > at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) > > At 2017-03-27 00:42:28, "a" <[hidden email]> wrote: > > > > Container log : error executor.CoarseGrainedExecutorBackend: RECEIVED > SIGNAL 15: SIGTERM。 > spark log: 17/03/26 23:40:30 ERROR YarnScheduler: Lost executor 2 on > hd25: Container killed by YARN for exceeding memory limits. 49.0 GB of 49 > GB physical memory used. Consider boosting spark.yarn.executor. > memoryOverhead. > The test sql > > > > > > > > At 2017-03-26 23:34:36, "a" <[hidden email]> wrote: > > > > > >I have set the parameters as follow: > >1、fs.hdfs.impl.disable.cache=true > >2、dfs.socket.timeout=1800000 (Exception:aused by: java.io.IOException: > Filesystem closed) > >3、dfs.datanode.socket.write.timeout=3600000 > >4、set carbondata property enable.unsafe.sort=true > >5、remove BUCKETCOLUMNS property from the create table sql > >6、set spark job parameter executor-memory=48G (from 20G to 48G) > > > > > >But it still failed, the error is "executor.CoarseGrainedExecutorBackend: > RECEIVED SIGNAL 15: SIGTERM。" > > > > > >Then i try to insert 40000 0000 records into carbondata table ,it works > success. > > > > > >How can i insert 20 0000 0000 records into carbondata? > >Should me set executor-memory big enough? Or Should me generate the csv > file from the hive table first ,then load the csv file into carbon table? > >Any body give me same help? > > > > > >Regards > >fish > > > > > > > > > > > > > > > >At 2017-03-26 00:34:18, "a" <[hidden email]> wrote: > >>Thank you Ravindra! > >>Version: > >>My carbondata version is 1.0,spark version is 1.6.3,hadoop version is > 2.7.1,hive version is 1.1.0 > >>one of the containers log: > >>17/03/25 22:07:09 ERROR executor.CoarseGrainedExecutorBackend: RECEIVED > SIGNAL 15: SIGTERM > >>17/03/25 22:07:09 INFO storage.DiskBlockManager: Shutdown hook called > >>17/03/25 22:07:09 INFO util.ShutdownHookManager: Shutdown hook called > >>17/03/25 22:07:09 INFO util.ShutdownHookManager: Deleting directory > /data1/hadoop/hd_space/tmp/nm-local-dir/usercache/storm/ > appcache/application_1490340325187_0042/spark-84b305f9-af7b-4f58-a809- > 700345a84109 > >>17/03/25 22:07:10 ERROR impl.ParallelReadMergeSorterImpl: > pool-23-thread-2 > >>java.io.IOException: Error reading file: hdfs://xxxx_table_tmp/dt=2017- > 01-01/pt=ios/000006_0 > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next( > RecordReaderImpl.java:1046) > >> at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger$ > OriginalReaderPair.next(OrcRawRecordMerger.java:263) > >> at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger.next( > OrcRawRecordMerger.java:547) > >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next( > OrcInputFormat.java:1234) > >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next( > OrcInputFormat.java:1218) > >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$ > NullKeyRecordReader.next(OrcInputFormat.java:1150) > >> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$ > NullKeyRecordReader.next(OrcInputFormat.java:1136) > >> at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext( > HadoopRDD.scala:249) > >> at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext( > HadoopRDD.scala:211) > >> at org.apache.spark.util.NextIterator.hasNext( > NextIterator.scala:73) > >> at org.apache.spark.InterruptibleIterator.hasNext( > InterruptibleIterator.scala:39) > >> at scala.collection.Iterator$$anon$11.hasNext(Iterator. > scala:327) > >> at scala.collection.Iterator$$anon$11.hasNext(Iterator. > scala:327) > >> at scala.collection.Iterator$$anon$11.hasNext(Iterator. > scala:327) > >> at org.apache.carbondata.spark.rdd.NewRddIterator.hasNext( > NewCarbonDataLoadRDD.scala:412) > >> at org.apache.carbondata.processing.newflow.steps. > InputProcessorStepImpl$InputProcessorIterator.internalHasNext( > InputProcessorStepImpl.java:163) > >> at org.apache.carbondata.processing.newflow.steps. > InputProcessorStepImpl$InputProcessorIterator.getBatch( > InputProcessorStepImpl.java:221) > >> at org.apache.carbondata.processing.newflow.steps. > InputProcessorStepImpl$InputProcessorIterator.next( > InputProcessorStepImpl.java:183) > >> at org.apache.carbondata.processing.newflow.steps. > InputProcessorStepImpl$InputProcessorIterator.next( > InputProcessorStepImpl.java:117) > >> at org.apache.carbondata.processing.newflow.steps. > DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl > .java:80) > >> at org.apache.carbondata.processing.newflow.steps. > DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl > .java:73) > >> at org.apache.carbondata.processing.newflow.sort.impl. > ParallelReadMergeSorterImpl$SortIteratorThread.call( > ParallelReadMergeSorterImpl.java:196) > >> at org.apache.carbondata.processing.newflow.sort.impl. > ParallelReadMergeSorterImpl$SortIteratorThread.call( > ParallelReadMergeSorterImpl.java:177) > >> at java.util.concurrent.FutureTask.run(FutureTask.java:262) > >> at java.util.concurrent.ThreadPoolExecutor.runWorker( > ThreadPoolExecutor.java:1145) > >> at java.util.concurrent.ThreadPoolExecutor$Worker.run( > ThreadPoolExecutor.java:615) > >> at java.lang.Thread.run(Thread.java:745) > >>Caused by: java.io.IOException: Filesystem closed > >> at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient. > java:808) > >> at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy( > DFSInputStream.java:868) > >> at org.apache.hadoop.hdfs.DFSInputStream.read( > DFSInputStream.java:934) > >> at java.io.DataInputStream.readFully(DataInputStream.java:195) > >> at org.apache.hadoop.hive.ql.io.orc.MetadataReader. > readStripeFooter(MetadataReader.java:112) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl. > readStripeFooter(RecordReaderImpl.java:228) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl. > beginReadStripe(RecordReaderImpl.java:805) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl. > readStripe(RecordReaderImpl.java:776) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl. > advanceStripe(RecordReaderImpl.java:986) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl. > advanceToNextRow(RecordReaderImpl.java:1019) > >> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next( > RecordReaderImpl.java:1042) > >> ... 26 more > >>I will try to set enable.unsafe.sort=true and remove BUCKETCOLUMNS > property ,and try again. > >> > >> > >>At 2017-03-25 20:55:03, "Ravindra Pesala" <[hidden email]> wrote: > >>>Hi, > >>> > >>>Carbodata launches one job per each node to sort the data at node level > and > >>>avoid shuffling. Internally it uses threads to use parallel load. Please > >>>use carbon.number.of.cores.while.loading property in carbon.properties > file > >>>and set the number of cores it should use per machine while loading. > >>>Carbondata sorts the data at each node level to maintain the Btree for > >>>each node per segment. It improves the query performance by filtering > >>>faster if we have Btree at node level instead of each block level. > >>> > >>>1.Which version of Carbondata are you using? > >>>2.There are memory issues in Carbondata-1.0 version and are fixed > current > >>>master. > >>>3.And you can improve the performance by enabling > enable.unsafe.sort=true in > >>>carbon.properties file. But it is not supported if bucketing of columns > are > >>>enabled. We are planning to support unsafe sort load for bucketing also > in > >>>next version. > >>> > >>>Please send the executor log to know about the error you are facing. > >>> > >>> > >>> > >>> > >>> > >>> > >>>Regards, > >>>Ravindra > >>> > >>>On 25 March 2017 at 16:18, [hidden email] <[hidden email]> wrote: > >>> > >>>> Hello! > >>>> > >>>> *0、The failure* > >>>> When i insert into carbon table,i encounter failure。The failure is as > >>>> follow: > >>>> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, > most > >>>> recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): > >>>> ExecutorLostFailure (executor 1 exited caused by one of the running > tasks) > >>>> Reason: Slave lost+details > >>>> > >>>> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, > most recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): > ExecutorLostFailure (executor 1 exited caused by one of the running tasks) > Reason: Slave lost > >>>> Driver stacktrace: > >>>> > >>>> the stage: > >>>> > >>>> *Step:* > >>>> *1、start spark-shell* > >>>> ./bin/spark-shell \ > >>>> --master yarn-client \ > >>>> --num-executors 5 \ (I tried to set this parameter range from 10 to > >>>> 20,but the second job has only 5 tasks) > >>>> --executor-cores 5 \ > >>>> --executor-memory 20G \ > >>>> --driver-memory 8G \ > >>>> --queue root.default \ > >>>> --jars /xxx.jar > >>>> > >>>> //spark-default.conf spark.default.parallelism=320 > >>>> > >>>> import org.apache.spark.sql.CarbonContext > >>>> val cc = new CarbonContext(sc, "hdfs://xxxx/carbonData/CarbonStore") > >>>> > >>>> *2、create table* > >>>> cc.sql("CREATE TABLE IF NOT EXISTS xxxx_table (dt String,pt String,lst > >>>> String,plat String,sty String,is_pay String,is_vip String,is_mpack > >>>> String,scene String,status String,nw String,isc String,area > String,spttag > >>>> String,province String,isp String,city String,tv String,hwm String,pip > >>>> String,fo String,sh String,mid String,user_id String,play_pv > Int,spt_cnt > >>>> Int,prg_spt_cnt Int) row format delimited fields terminated by '|' > STORED > >>>> BY 'carbondata' TBLPROPERTIES ('DICTIONARY_EXCLUDE'='pip,sh, > >>>> mid,fo,user_id','DICTIONARY_INCLUDE'='dt,pt,lst,plat,sty, > >>>> is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag, > >>>> province,isp,city,tv,hwm','NO_INVERTED_INDEX'='lst,plat,hwm, > >>>> pip,sh,mid','BUCKETNUMBER'='10','BUCKETCOLUMNS'='fo')") > >>>> > >>>> //notes,set "fo" column BUCKETCOLUMNS is to join another table > >>>> //the column distinct values are as follows: > >>>> > >>>> > >>>> *3、insert into table*(xxxx_table_tmp is a hive extenal orc table,has > 20 > >>>> 0000 0000 records) > >>>> cc.sql("insert into xxxx_table select dt,pt,lst,plat,sty,is_pay,is_ > >>>> vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp, > >>>> city,tv,hwm,pip,fo,sh,mid,user_id ,play_pv,spt_cnt,prg_spt_cnt from > >>>> xxxx_table_tmp where dt='2017-01-01'") > >>>> > >>>> *4、spark split sql into two jobs,the first finished succeeded, but the > >>>> second failed:* > >>>> > >>>> > >>>> *5、The second job stage:* > >>>> > >>>> > >>>> > >>>> *Question:* > >>>> 1、Why the second job has only five jobs,but the first job has 994 > jobs ?( > >>>> note:My hadoop cluster has 5 datanode) > >>>> I guess it caused the failure > >>>> 2、In the sources,i find DataLoadPartitionCoalescer.class,is it means > that > >>>> "one datanode has only one partition ,and then the task is only one > on the > >>>> datanode"? > >>>> 3、In the ExampleUtils class,"carbon.table.split.partition.enable" is > set > >>>> as follow,but i can not find "carbon.table.split.partition.enable" in > >>>> other parts of the project。 > >>>> I set "carbon.table.split.partition.enable" to true, but the > second > >>>> job has only five jobs.How to use this property? > >>>> ExampleUtils : > >>>> // whether use table split partition > >>>> // true -> use table split partition, support multiple partition > >>>> loading > >>>> // false -> use node split partition, support data load by host > >>>> partition > >>>> CarbonProperties.getInstance().addProperty("carbon.table. > split.partition.enable", > >>>> "false") > >>>> 4、Insert into carbon table takes 3 hours ,but eventually failed 。How > can > >>>> i speed it. > >>>> 5、in the spark-shell ,I tried to set this parameter range from 10 to > >>>> 20,but the second job has only 5 tasks > >>>> the other parameter executor-memory = 20G is enough? > >>>> > >>>> I need your help!Thank you very much! > >>>> > >>>> [hidden email] > >>>> > >>>> ------------------------------ > >>>> [hidden email] > >>>> > >>> > >>> > >>> > >>>-- > >>>Thanks & Regards, > >>>Ravi > -- Thanks & Regards, Ravi |
In reply to this post by a
TEST SQL :
高基数随机查询 select * From carbon_table where dt='2017-01-01' and user_id='XXXX' limit 100; 高基数随机查询like select * From carbon_table where dt='2017-01-01' and fo like '%YYYY%' limit 100; 低基数随机查询 select * From carbon_table where dt='2017-01-01' and plat='android' and tv='8400' limit 100 1维度查询 select province,sum(play_pv) play_pv ,sum(spt_cnt) spt_cnt from carbon_table where dt='2017-01-01' and sty='AAAA' group by province 2维度查询 select province,city,sum(play_pv) play_pv ,sum(spt_cnt) spt_cnt from carbon_table where dt='2017-01-01' and sty='AAAA' group by province,city 3维度查询 select province,city,isp,sum(play_pv) play_pv ,sum(spt_cnt) spt_cnt from carbon_table where dt='2017-01-01' and sty='AAAA' group by province,city,isp 多维度查询 select sty,isc,status,nw,tv,area,province,city,isp,sum(play_pv) play_pv_sum ,sum(spt_cnt) spt_cnt_sum from carbon_table where dt='2017-01-01' and sty='AAAA' group by sty,isc,status,nw,tv,area,province,city,isp distinct 单列 select tv, count(distinct user_id) from carbon_table where dt='2017-01-01' and sty='AAAA' and fo like '%YYYY%' group by tv distinct 多列 select count(distinct user_id) ,count(distinct mid),count(distinct case when sty='AAAA' then mid end) from carbon_table where dt='2017-01-01' and sty='AAAA' 排序查询 select user_id,sum(play_pv) play_pv_sum from carbon_table group by user_id order by play_pv_sum desc limit 100 简单join查询 select b.fo_level1,b.fo_level2,sum(a.play_pv) play_pv_sum From carbon_table a left join dim_carbon_table b on a.fo=b.fo and a.dt = b.dt where a.dt = '2017-01-01' group by b.fo_level1,b.fo_level2 At 2017-03-27 04:10:04, "a" <[hidden email]> wrote: >I download the newest sourcecode (master) and compile,generate the jar carbondata_2.11-1.1.0-incubating-SNAPSHOT-shade-hadoop2.7.2.jar >Then i use spark2.1 test again.The error logs are as follow: > > > Container log : >17/03/27 02:27:21 ERROR newflow.DataLoadExecutor: Executor task launch worker-9 Data Loading failed for table carbon_table >java.lang.NullPointerException > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) >17/03/27 02:27:21 INFO rdd.NewDataFrameLoaderRDD: DataLoad failure >org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) >Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more >17/03/27 02:27:21 ERROR rdd.NewDataFrameLoaderRDD: Executor task launch worker-9 >org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) >Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more >17/03/27 02:27:21 ERROR executor.Executor: Exception in task 0.3 in stage 2.0 (TID 538) >org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) >Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more > > > >Spark log: > >ERROR 27-03 02:27:21,407 - Task 0 in stage 2.0 failed 4 times; aborting job >ERROR 27-03 02:27:21,419 - main load data frame failed >org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 538, hd25): org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) >Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more > > >Driver stacktrace: > at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418) > at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) > at scala.Option.foreach(Option.scala:236) > at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929) > at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927) > at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) > at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) > at org.apache.spark.rdd.RDD.collect(RDD.scala:926) > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadDataFrame$1(CarbonDataRDDFactory.scala:665) > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadCarbonData(CarbonDataRDDFactory.scala:794) > at org.apache.spark.sql.execution.command.LoadTable.run(carbonTableSchema.scala:579) > at org.apache.spark.sql.execution.command.LoadTableByInsert.run(carbonTableSchema.scala:297) > at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) > at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) > at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130) > at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) > at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130) > at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) > at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) > at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) > at $line23.$read$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42) > at $line23.$read$$iwC$$iwC$$iwC.<init>(<console>:44) > at $line23.$read$$iwC$$iwC.<init>(<console>:46) > at $line23.$read$$iwC.<init>(<console>:48) > at $line23.$read.<init>(<console>:50) > at $line23.$read$.<init>(<console>:54) > at $line23.$read$.<clinit>(<console>) > at $line23.$eval$.<init>(<console>:7) > at $line23.$eval$.<clinit>(<console>) > at $line23.$eval.$print(<console>) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065) > at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346) > at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) > at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857) > at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902) > at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) > at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657) > at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665) > at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) > at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) > at org.apache.spark.repl.Main$.main(Main.scala:31) > at org.apache.spark.repl.Main.main(Main.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) > at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181) > at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) > at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) > at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) >Caused by: org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) >Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more >ERROR 27-03 02:27:21,422 - main >org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 538, hd25): org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) >Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more > > >Driver stacktrace: > at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418) > at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) > at scala.Option.foreach(Option.scala:236) > at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929) > at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927) > at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) > at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) > at org.apache.spark.rdd.RDD.collect(RDD.scala:926) > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadDataFrame$1(CarbonDataRDDFactory.scala:665) > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadCarbonData(CarbonDataRDDFactory.scala:794) > at org.apache.spark.sql.execution.command.LoadTable.run(carbonTableSchema.scala:579) > at org.apache.spark.sql.execution.command.LoadTableByInsert.run(carbonTableSchema.scala:297) > at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) > at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) > at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130) > at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) > at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130) > at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) > at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) > at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) > at $line23.$read$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42) > at $line23.$read$$iwC$$iwC$$iwC.<init>(<console>:44) > at $line23.$read$$iwC$$iwC.<init>(<console>:46) > at $line23.$read$$iwC.<init>(<console>:48) > at $line23.$read.<init>(<console>:50) > at $line23.$read$.<init>(<console>:54) > at $line23.$read$.<clinit>(<console>) > at $line23.$eval$.<init>(<console>:7) > at $line23.$eval$.<clinit>(<console>) > at $line23.$eval.$print(<console>) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065) > at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346) > at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) > at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857) > at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902) > at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) > at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657) > at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665) > at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) > at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) > at org.apache.spark.repl.Main$.main(Main.scala:31) > at org.apache.spark.repl.Main.main(Main.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) > at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181) > at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) > at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) > at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) >Caused by: org.apache.carbondata.processing.newflow.exception.CarbonDataLoadingException: Data Loading failed for table carbon_table > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:54) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD$$anon$2.<init>(NewCarbonDataLoadRDD.scala:365) > at org.apache.carbondata.spark.rdd.NewDataFrameLoaderRDD.compute(NewCarbonDataLoadRDD.scala:322) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) > at org.apache.spark.scheduler.Task.run(Task.scala:89) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) > at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:745) >Caused by: java.lang.NullPointerException > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.createConfiguration(DataLoadProcessBuilder.java:158) > at org.apache.carbondata.processing.newflow.DataLoadProcessBuilder.build(DataLoadProcessBuilder.java:60) > at org.apache.carbondata.processing.newflow.DataLoadExecutor.execute(DataLoadExecutor.java:43) > ... 10 more >AUDIT 27-03 02:27:21,453 - [hd21][storm][Thread-1]Data load is failed for default.carbon_table >ERROR 27-03 02:27:21,453 - main >java.lang.Exception: DataLoad failure: Data Loading failed for table carbon_table > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadCarbonData(CarbonDataRDDFactory.scala:937) > at org.apache.spark.sql.execution.command.LoadTable.run(carbonTableSchema.scala:579) > at org.apache.spark.sql.execution.command.LoadTableByInsert.run(carbonTableSchema.scala:297) > at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) > at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) > at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130) > at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) > at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130) > at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) > at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) > at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38) > at $line23.$read$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) > at $line23.$read$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42) > at $line23.$read$$iwC$$iwC$$iwC.<init>(<console>:44) > at $line23.$read$$iwC$$iwC.<init>(<console>:46) > at $line23.$read$$iwC.<init>(<console>:48) > at $line23.$read.<init>(<console>:50) > at $line23.$read$.<init>(<console>:54) > at $line23.$read$.<clinit>(<console>) > at $line23.$eval$.<init>(<console>:7) > at $line23.$eval$.<clinit>(<console>) > at $line23.$eval.$print(<console>) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065) > at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346) > at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) > at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857) > at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902) > at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) > at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657) > at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665) > at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) > at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) > at org.apache.spark.repl.Main$.main(Main.scala:31) > at org.apache.spark.repl.Main.main(Main.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) > at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181) > at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) > at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) > at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) >AUDIT 27-03 02:27:21,454 - [hd21][storm][Thread-1]Dataload failure for default.carbon_table. Please check the logs >java.lang.Exception: DataLoad failure: Data Loading failed for table carbon_table > at org.apache.carbondata.spark.rdd.CarbonDataRDDFactory$.loadCarbonData(CarbonDataRDDFactory.scala:937) > at org.apache.spark.sql.execution.command.LoadTable.run(carbonTableSchema.scala:579) > at org.apache.spark.sql.execution.command.LoadTableByInsert.run(carbonTableSchema.scala:297) > at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58) > at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56) > at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132) > at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130) > at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) > at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130) > at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55) > at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130) > at org.apache.spark.sql.CarbonContext.sql(CarbonContext.scala:139) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36) > at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38) > at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) > at $iwC$$iwC$$iwC$$iwC.<init>(<console>:42) > at $iwC$$iwC$$iwC.<init>(<console>:44) > at $iwC$$iwC.<init>(<console>:46) > at $iwC.<init>(<console>:48) > at <init>(<console>:50) > at .<init>(<console>:54) > at .<clinit>(<console>) > at .<init>(<console>:7) > at .<clinit>(<console>) > at $print(<console>) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065) > at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346) > at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871) > at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819) > at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857) > at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902) > at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814) > at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657) > at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665) > at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945) > at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) > at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945) > at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059) > at org.apache.spark.repl.Main$.main(Main.scala:31) > at org.apache.spark.repl.Main.main(Main.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) > at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:606) > at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) > at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181) > at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) > at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) > at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) > >At 2017-03-27 00:42:28, "a" <[hidden email]> wrote: > > > > Container log : error executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM。 > spark log: 17/03/26 23:40:30 ERROR YarnScheduler: Lost executor 2 on hd25: Container killed by YARN for exceeding memory limits. 49.0 GB of 49 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead. >The test sql > > > > > > > >At 2017-03-26 23:34:36, "a" <[hidden email]> wrote: >> >> >>I have set the parameters as follow: >>1、fs.hdfs.impl.disable.cache=true >>2、dfs.socket.timeout=1800000 (Exception:aused by: java.io.IOException: Filesystem closed) >>3、dfs.datanode.socket.write.timeout=3600000 >>4、set carbondata property enable.unsafe.sort=true >>5、remove BUCKETCOLUMNS property from the create table sql >>6、set spark job parameter executor-memory=48G (from 20G to 48G) >> >> >>But it still failed, the error is "executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM。" >> >> >>Then i try to insert 40000 0000 records into carbondata table ,it works success. >> >> >>How can i insert 20 0000 0000 records into carbondata? >>Should me set executor-memory big enough? Or Should me generate the csv file from the hive table first ,then load the csv file into carbon table? >>Any body give me same help? >> >> >>Regards >>fish >> >> >> >> >> >> >> >>At 2017-03-26 00:34:18, "a" <[hidden email]> wrote: >>>Thank you Ravindra! >>>Version: >>>My carbondata version is 1.0,spark version is 1.6.3,hadoop version is 2.7.1,hive version is 1.1.0 >>>one of the containers log: >>>17/03/25 22:07:09 ERROR executor.CoarseGrainedExecutorBackend: RECEIVED SIGNAL 15: SIGTERM >>>17/03/25 22:07:09 INFO storage.DiskBlockManager: Shutdown hook called >>>17/03/25 22:07:09 INFO util.ShutdownHookManager: Shutdown hook called >>>17/03/25 22:07:09 INFO util.ShutdownHookManager: Deleting directory /data1/hadoop/hd_space/tmp/nm-local-dir/usercache/storm/appcache/application_1490340325187_0042/spark-84b305f9-af7b-4f58-a809-700345a84109 >>>17/03/25 22:07:10 ERROR impl.ParallelReadMergeSorterImpl: pool-23-thread-2 >>>java.io.IOException: Error reading file: hdfs://xxxx_table_tmp/dt=2017-01-01/pt=ios/000006_0 >>> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next(RecordReaderImpl.java:1046) >>> at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger$OriginalReaderPair.next(OrcRawRecordMerger.java:263) >>> at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger.next(OrcRawRecordMerger.java:547) >>> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next(OrcInputFormat.java:1234) >>> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$1.next(OrcInputFormat.java:1218) >>> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$NullKeyRecordReader.next(OrcInputFormat.java:1150) >>> at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$NullKeyRecordReader.next(OrcInputFormat.java:1136) >>> at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:249) >>> at org.apache.spark.rdd.HadoopRDD$$anon$1.getNext(HadoopRDD.scala:211) >>> at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73) >>> at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) >>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) >>> at org.apache.carbondata.spark.rdd.NewRddIterator.hasNext(NewCarbonDataLoadRDD.scala:412) >>> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.internalHasNext(InputProcessorStepImpl.java:163) >>> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.getBatch(InputProcessorStepImpl.java:221) >>> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.next(InputProcessorStepImpl.java:183) >>> at org.apache.carbondata.processing.newflow.steps.InputProcessorStepImpl$InputProcessorIterator.next(InputProcessorStepImpl.java:117) >>> at org.apache.carbondata.processing.newflow.steps.DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl.java:80) >>> at org.apache.carbondata.processing.newflow.steps.DataConverterProcessorStepImpl$1.next(DataConverterProcessorStepImpl.java:73) >>> at org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl$SortIteratorThread.call(ParallelReadMergeSorterImpl.java:196) >>> at org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl$SortIteratorThread.call(ParallelReadMergeSorterImpl.java:177) >>> at java.util.concurrent.FutureTask.run(FutureTask.java:262) >>> at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) >>> at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) >>> at java.lang.Thread.run(Thread.java:745) >>>Caused by: java.io.IOException: Filesystem closed >>> at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:808) >>> at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy(DFSInputStream.java:868) >>> at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:934) >>> at java.io.DataInputStream.readFully(DataInputStream.java:195) >>> at org.apache.hadoop.hive.ql.io.orc.MetadataReader.readStripeFooter(MetadataReader.java:112) >>> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripeFooter(RecordReaderImpl.java:228) >>> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.beginReadStripe(RecordReaderImpl.java:805) >>> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripe(RecordReaderImpl.java:776) >>> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.advanceStripe(RecordReaderImpl.java:986) >>> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.advanceToNextRow(RecordReaderImpl.java:1019) >>> at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.next(RecordReaderImpl.java:1042) >>> ... 26 more >>>I will try to set enable.unsafe.sort=true and remove BUCKETCOLUMNS property ,and try again. >>> >>> >>>At 2017-03-25 20:55:03, "Ravindra Pesala" <[hidden email]> wrote: >>>>Hi, >>>> >>>>Carbodata launches one job per each node to sort the data at node level and >>>>avoid shuffling. Internally it uses threads to use parallel load. Please >>>>use carbon.number.of.cores.while.loading property in carbon.properties file >>>>and set the number of cores it should use per machine while loading. >>>>Carbondata sorts the data at each node level to maintain the Btree for >>>>each node per segment. It improves the query performance by filtering >>>>faster if we have Btree at node level instead of each block level. >>>> >>>>1.Which version of Carbondata are you using? >>>>2.There are memory issues in Carbondata-1.0 version and are fixed current >>>>master. >>>>3.And you can improve the performance by enabling enable.unsafe.sort=true in >>>>carbon.properties file. But it is not supported if bucketing of columns are >>>>enabled. We are planning to support unsafe sort load for bucketing also in >>>>next version. >>>> >>>>Please send the executor log to know about the error you are facing. >>>> >>>> >>>> >>>> >>>> >>>> >>>>Regards, >>>>Ravindra >>>> >>>>On 25 March 2017 at 16:18, [hidden email] <[hidden email]> wrote: >>>> >>>>> Hello! >>>>> >>>>> *0、The failure* >>>>> When i insert into carbon table,i encounter failure。The failure is as >>>>> follow: >>>>> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most >>>>> recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): >>>>> ExecutorLostFailure (executor 1 exited caused by one of the running tasks) >>>>> Reason: Slave lost+details >>>>> >>>>> Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 1007, hd26): ExecutorLostFailure (executor 1 exited caused by one of the running tasks) Reason: Slave lost >>>>> Driver stacktrace: >>>>> >>>>> the stage: >>>>> >>>>> *Step:* >>>>> *1、start spark-shell* >>>>> ./bin/spark-shell \ >>>>> --master yarn-client \ >>>>> --num-executors 5 \ (I tried to set this parameter range from 10 to >>>>> 20,but the second job has only 5 tasks) >>>>> --executor-cores 5 \ >>>>> --executor-memory 20G \ >>>>> --driver-memory 8G \ >>>>> --queue root.default \ >>>>> --jars /xxx.jar >>>>> >>>>> //spark-default.conf spark.default.parallelism=320 >>>>> >>>>> import org.apache.spark.sql.CarbonContext >>>>> val cc = new CarbonContext(sc, "hdfs://xxxx/carbonData/CarbonStore") >>>>> >>>>> *2、create table* >>>>> cc.sql("CREATE TABLE IF NOT EXISTS xxxx_table (dt String,pt String,lst >>>>> String,plat String,sty String,is_pay String,is_vip String,is_mpack >>>>> String,scene String,status String,nw String,isc String,area String,spttag >>>>> String,province String,isp String,city String,tv String,hwm String,pip >>>>> String,fo String,sh String,mid String,user_id String,play_pv Int,spt_cnt >>>>> Int,prg_spt_cnt Int) row format delimited fields terminated by '|' STORED >>>>> BY 'carbondata' TBLPROPERTIES ('DICTIONARY_EXCLUDE'='pip,sh, >>>>> mid,fo,user_id','DICTIONARY_INCLUDE'='dt,pt,lst,plat,sty, >>>>> is_pay,is_vip,is_mpack,scene,status,nw,isc,area,spttag, >>>>> province,isp,city,tv,hwm','NO_INVERTED_INDEX'='lst,plat,hwm, >>>>> pip,sh,mid','BUCKETNUMBER'='10','BUCKETCOLUMNS'='fo')") >>>>> >>>>> //notes,set "fo" column BUCKETCOLUMNS is to join another table >>>>> //the column distinct values are as follows: >>>>> >>>>> >>>>> *3、insert into table*(xxxx_table_tmp is a hive extenal orc table,has 20 >>>>> 0000 0000 records) >>>>> cc.sql("insert into xxxx_table select dt,pt,lst,plat,sty,is_pay,is_ >>>>> vip,is_mpack,scene,status,nw,isc,area,spttag,province,isp, >>>>> city,tv,hwm,pip,fo,sh,mid,user_id ,play_pv,spt_cnt,prg_spt_cnt from >>>>> xxxx_table_tmp where dt='2017-01-01'") >>>>> >>>>> *4、spark split sql into two jobs,the first finished succeeded, but the >>>>> second failed:* >>>>> >>>>> >>>>> *5、The second job stage:* >>>>> >>>>> >>>>> >>>>> *Question:* >>>>> 1、Why the second job has only five jobs,but the first job has 994 jobs ?( >>>>> note:My hadoop cluster has 5 datanode) >>>>> I guess it caused the failure >>>>> 2、In the sources,i find DataLoadPartitionCoalescer.class,is it means that >>>>> "one datanode has only one partition ,and then the task is only one on the >>>>> datanode"? >>>>> 3、In the ExampleUtils class,"carbon.table.split.partition.enable" is set >>>>> as follow,but i can not find "carbon.table.split.partition.enable" in >>>>> other parts of the project。 >>>>> I set "carbon.table.split.partition.enable" to true, but the second >>>>> job has only five jobs.How to use this property? >>>>> ExampleUtils : >>>>> // whether use table split partition >>>>> // true -> use table split partition, support multiple partition >>>>> loading >>>>> // false -> use node split partition, support data load by host >>>>> partition >>>>> CarbonProperties.getInstance().addProperty("carbon.table.split.partition.enable", >>>>> "false") >>>>> 4、Insert into carbon table takes 3 hours ,but eventually failed 。How can >>>>> i speed it. >>>>> 5、in the spark-shell ,I tried to set this parameter range from 10 to >>>>> 20,but the second job has only 5 tasks >>>>> the other parameter executor-memory = 20G is enough? >>>>> >>>>> I need your help!Thank you very much! >>>>> >>>>> [hidden email] >>>>> >>>>> ------------------------------ >>>>> [hidden email] >>>>> >>>> >>>> >>>> >>>>-- >>>>Thanks & Regards, >>>>Ravi |
Administrator
|
Hi
1.Use your current test environment (CarbonData 1.0 + Spark1.6), Please divide 2 billions data into 4 pieces(each is 0.5 billion), load data again. 2.For CarbonData 1.0 + Spark1.6 with kettle for loading data, please configure the bellow 3 parameters in carbon.properties(note: please copy the latest carbon.properties to all nodes) carbon.graph.rowset.size=10000 (by default is 100000, please set to 1/10 for reducing Rowset size exchanged between data load graph) carbon.number.of.cores.while.loading=5 (because your machine has 5 cores) carbon.sort.size=50000 ( by default is 500000, please set to 1/10 for reducing temp intermediate files) Regards Liang |
In reply to this post by ravipesala
I guess then word node in "Carbodata launches one job per each node to sort
the data at node level and avoid shuffling" may make some confuse. I guess carbondata should launches one task per each executor . here job should be task ,node should be executor. Maybe he can try increase the number of executors to avoid memory problem |
Administrator
|
In reply to this post by a
Hi
Please enable vector , it might help limit query. import org.apache.carbondata.core.util.CarbonProperties import org.apache.carbondata.core.constants.CarbonCommonConstants CarbonProperties.getInstance().addProperty(CarbonCommonConstants.ENABLE_VECTOR_READER, "true") Regards Liang
|
In reply to this post by Liang Chen
Thank you very much!
I have divided 2 billions data into 4 pieces and loaded in the table 。 The three paramaters carbon.graph.rowset.size、 carbon.sort.size 、carbon.number.of.cores.while.loading may be also effect。 Best regards! At 2017-03-27 13:53:58, "Liang Chen" <[hidden email]> wrote: >Hi > >1.Use your current test environment (CarbonData 1.0 + Spark1.6), Please >divide 2 billions data into 4 pieces(each is 0.5 billion), load data again. > >2.For CarbonData 1.0 + Spark1.6 with kettle for loading data, please >configure the bellow 3 parameters in carbon.properties(note: please copy the >latest carbon.properties to all nodes) > >carbon.graph.rowset.size=10000 (by default is 100000, please set to 1/10 >for reducing Rowset size exchanged between data load graph) >carbon.number.of.cores.while.loading=5 (because your machine has 5 cores) >carbon.sort.size=50000 ( by default is 500000, please set to 1/10 for >reducing temp intermediate files) > > >Regards >Liang > > > >-- >View this message in context: http://apache-carbondata-mailing-list-archive.1130556.n5.nabble.com/insert-into-carbon-table-failed-tp9609p9688.html >Sent from the Apache CarbonData Mailing List archive mailing list archive at Nabble.com. |
Free forum by Nabble | Edit this page |